# Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) # Adapted by Florian Lux 2021 import torch from .LayerNorm import LayerNorm class DurationPredictor(torch.nn.Module): """ Duration predictor module. This is a module of duration predictor described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf Note: The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. """ def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0): """ Initialize duration predictor module. Args: idim (int): Input dimension. n_layers (int, optional): Number of convolutional layers. n_chans (int, optional): Number of channels of convolutional layers. kernel_size (int, optional): Kernel size of convolutional layers. dropout_rate (float, optional): Dropout rate. offset (float, optional): Offset value to avoid nan in log domain. """ super(DurationPredictor, self).__init__() self.offset = offset self.conv = torch.nn.ModuleList() for idx in range(n_layers): in_chans = idim if idx == 0 else n_chans self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ), torch.nn.ReLU(), LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate), )] self.linear = torch.nn.Linear(n_chans, 1) def _forward(self, xs, x_masks=None, is_inference=False): xs = xs.transpose(1, -1) # (B, idim, Tmax) for f in self.conv: xs = f(xs) # (B, C, Tmax) # NOTE: calculate in log domain xs = self.linear(xs.transpose(1, -1)).squeeze(-1) # (B, Tmax) if is_inference: # NOTE: calculate in linear domain xs = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value if x_masks is not None: xs = xs.masked_fill(x_masks, 0.0) return xs def forward(self, xs, x_masks=None): """ Calculate forward propagation. Args: xs (Tensor): Batch of input sequences (B, Tmax, idim). x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). Returns: Tensor: Batch of predicted durations in log domain (B, Tmax). """ return self._forward(xs, x_masks, False) def inference(self, xs, x_masks=None): """ Inference duration. Args: xs (Tensor): Batch of input sequences (B, Tmax, idim). x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). Returns: LongTensor: Batch of predicted durations in linear domain (B, Tmax). """ return self._forward(xs, x_masks, True) class DurationPredictorLoss(torch.nn.Module): """ Loss function module for duration predictor. The loss value is Calculated in log domain to make it Gaussian. """ def __init__(self, offset=1.0, reduction="mean"): """ Args: offset (float, optional): Offset value to avoid nan in log domain. reduction (str): Reduction type in loss calculation. """ super(DurationPredictorLoss, self).__init__() self.criterion = torch.nn.MSELoss(reduction=reduction) self.offset = offset def forward(self, outputs, targets): """ Calculate forward propagation. Args: outputs (Tensor): Batch of prediction durations in log domain (B, T) targets (LongTensor): Batch of groundtruth durations in linear domain (B, T) Returns: Tensor: Mean squared error loss value. Note: `outputs` is in log domain but `targets` is in linear domain. """ # NOTE: outputs is in log domain while targets in linear targets = torch.log(targets.float() + self.offset) loss = self.criterion(outputs, targets) return loss