Spaces:
Running
Running
Added IMSToucan as normal directory instead of submodule
Browse files- IMSToucan/.gitignore +20 -0
- IMSToucan/InferenceInterfaces/AnonFastSpeech2.py +91 -0
- IMSToucan/InferenceInterfaces/InferenceArchitectures/InferenceFastSpeech2.py +256 -0
- IMSToucan/InferenceInterfaces/InferenceArchitectures/InferenceHiFiGAN.py +91 -0
- IMSToucan/InferenceInterfaces/InferenceArchitectures/__init__.py +0 -0
- IMSToucan/InferenceInterfaces/__init__.py +0 -0
- IMSToucan/LICENSE +202 -0
- IMSToucan/Layers/Attention.py +324 -0
- IMSToucan/Layers/Conformer.py +144 -0
- IMSToucan/Layers/Convolution.py +55 -0
- IMSToucan/Layers/DurationPredictor.py +139 -0
- IMSToucan/Layers/EncoderLayer.py +144 -0
- IMSToucan/Layers/LayerNorm.py +36 -0
- IMSToucan/Layers/LengthRegulator.py +62 -0
- IMSToucan/Layers/MultiLayeredConv1d.py +87 -0
- IMSToucan/Layers/MultiSequential.py +33 -0
- IMSToucan/Layers/PositionalEncoding.py +166 -0
- IMSToucan/Layers/PositionwiseFeedForward.py +26 -0
- IMSToucan/Layers/PostNet.py +74 -0
- IMSToucan/Layers/RNNAttention.py +282 -0
- IMSToucan/Layers/ResidualBlock.py +98 -0
- IMSToucan/Layers/ResidualStack.py +51 -0
- IMSToucan/Layers/STFT.py +118 -0
- IMSToucan/Layers/Swish.py +18 -0
- IMSToucan/Layers/VariancePredictor.py +65 -0
- IMSToucan/Layers/__init__.py +0 -0
- IMSToucan/Preprocessing/ArticulatoryCombinedTextFrontend.py +323 -0
- IMSToucan/Preprocessing/AudioPreprocessor.py +166 -0
- IMSToucan/Preprocessing/ProsodicConditionExtractor.py +40 -0
- IMSToucan/Preprocessing/__init__.py +0 -0
- IMSToucan/Preprocessing/papercup_features.py +637 -0
- IMSToucan/README.md +327 -0
- IMSToucan/Utility/SpeakerVisualization.py +94 -0
- IMSToucan/Utility/__init__.py +0 -0
- IMSToucan/Utility/utils.py +320 -0
- IMSToucan/requirements.txt +83 -0
IMSToucan/.gitignore
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
*.pyc
|
3 |
+
*.png
|
4 |
+
*.pdf
|
5 |
+
tensorboard_logs
|
6 |
+
Corpora
|
7 |
+
Models
|
8 |
+
*_graph
|
9 |
+
*.out
|
10 |
+
*.wav
|
11 |
+
audios/notes.txt
|
12 |
+
audios/
|
13 |
+
*playground*
|
14 |
+
apex/
|
15 |
+
pretrained_models/
|
16 |
+
*.json
|
17 |
+
.tmp/
|
18 |
+
.vscode/
|
19 |
+
split/
|
20 |
+
singing/
|
IMSToucan/InferenceInterfaces/AnonFastSpeech2.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa.display as lbd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import soundfile
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from .InferenceArchitectures.InferenceFastSpeech2 import FastSpeech2
|
7 |
+
from .InferenceArchitectures.InferenceHiFiGAN import HiFiGANGenerator
|
8 |
+
from ..Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend
|
9 |
+
from ..Preprocessing.ArticulatoryCombinedTextFrontend import get_language_id
|
10 |
+
|
11 |
+
|
12 |
+
class AnonFastSpeech2(torch.nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, device: str, path_to_hifigan_model: str, path_to_fastspeech_model: str):
|
15 |
+
"""
|
16 |
+
Args:
|
17 |
+
device: Device to run on. CPU is feasible, still faster than real-time, but a GPU is significantly faster.
|
18 |
+
path_to_hifigan_model: Path to the vocoder model, including filename and suffix.
|
19 |
+
path_to_fastspeech_model: Path to the synthesis model, including filename and suffix.
|
20 |
+
|
21 |
+
"""
|
22 |
+
super().__init__()
|
23 |
+
language = "en"
|
24 |
+
self.device = device
|
25 |
+
self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True)
|
26 |
+
checkpoint = torch.load(path_to_fastspeech_model, map_location='cpu')
|
27 |
+
self.phone2mel = FastSpeech2(weights=checkpoint["model"], lang_embs=None).to(torch.device(device))
|
28 |
+
self.mel2wav = HiFiGANGenerator(path_to_weights=path_to_hifigan_model).to(torch.device(device))
|
29 |
+
self.default_utterance_embedding = checkpoint["default_emb"].to(self.device)
|
30 |
+
self.phone2mel.eval()
|
31 |
+
self.mel2wav.eval()
|
32 |
+
self.lang_id = get_language_id(language)
|
33 |
+
self.to(torch.device(device))
|
34 |
+
|
35 |
+
def forward(self, text, view=False, text_is_phonemes=False):
|
36 |
+
"""
|
37 |
+
Args:
|
38 |
+
text: The text that the TTS should convert to speech
|
39 |
+
view: Boolean flag whether to produce and display a graphic showing the generated audio
|
40 |
+
text_is_phonemes: Boolean flag whether the text parameter contains phonemes (True) or graphemes (False)
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
48kHz waveform as 1d tensor
|
44 |
+
|
45 |
+
"""
|
46 |
+
with torch.no_grad():
|
47 |
+
phones = self.text2phone.string_to_tensor(text, input_phonemes=text_is_phonemes).to(torch.device(self.device))
|
48 |
+
mel, durations, pitch, energy = self.phone2mel(phones,
|
49 |
+
return_duration_pitch_energy=True,
|
50 |
+
utterance_embedding=self.default_utterance_embedding)
|
51 |
+
mel = mel.transpose(0, 1)
|
52 |
+
wave = self.mel2wav(mel)
|
53 |
+
if view:
|
54 |
+
from Utility.utils import cumsum_durations
|
55 |
+
fig, ax = plt.subplots(nrows=2, ncols=1)
|
56 |
+
ax[0].plot(wave.cpu().numpy())
|
57 |
+
lbd.specshow(mel.cpu().numpy(),
|
58 |
+
ax=ax[1],
|
59 |
+
sr=16000,
|
60 |
+
cmap='GnBu',
|
61 |
+
y_axis='mel',
|
62 |
+
x_axis=None,
|
63 |
+
hop_length=256)
|
64 |
+
ax[0].yaxis.set_visible(False)
|
65 |
+
ax[1].yaxis.set_visible(False)
|
66 |
+
duration_splits, label_positions = cumsum_durations(durations.cpu().numpy())
|
67 |
+
ax[1].set_xticks(duration_splits, minor=True)
|
68 |
+
ax[1].xaxis.grid(True, which='minor')
|
69 |
+
ax[1].set_xticks(label_positions, minor=False)
|
70 |
+
ax[1].set_xticklabels(self.text2phone.get_phone_string(text))
|
71 |
+
ax[0].set_title(text)
|
72 |
+
plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.9, wspace=0.0, hspace=0.0)
|
73 |
+
plt.show()
|
74 |
+
return wave
|
75 |
+
|
76 |
+
def anonymize_to_file(self, text: str, text_is_phonemes: bool, target_speaker_embedding: torch.tensor, path_to_result_file: str):
|
77 |
+
"""
|
78 |
+
Args:
|
79 |
+
text: The text that the TTS should convert to speech
|
80 |
+
text_is_phonemes: Boolean flag whether the text parameter contains phonemes (True) or graphemes (False)
|
81 |
+
target_speaker_embedding: The speaker embedding that should be used for the produced speech
|
82 |
+
path_to_result_file: The path to the location where the resulting speech should be saved (including the filename and .wav suffix)
|
83 |
+
|
84 |
+
"""
|
85 |
+
|
86 |
+
assert text.strip() != ""
|
87 |
+
assert path_to_result_file.endswith(".wav")
|
88 |
+
|
89 |
+
self.default_utterance_embedding = target_speaker_embedding.to(self.device)
|
90 |
+
wav = self(text=text, text_is_phonemes=text_is_phonemes)
|
91 |
+
soundfile.write(file=path_to_result_file, data=wav.cpu().numpy(), samplerate=48000)
|
IMSToucan/InferenceInterfaces/InferenceArchitectures/InferenceFastSpeech2.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from ...Layers.Conformer import Conformer
|
6 |
+
from ...Layers.DurationPredictor import DurationPredictor
|
7 |
+
from ...Layers.LengthRegulator import LengthRegulator
|
8 |
+
from ...Layers.PostNet import PostNet
|
9 |
+
from ...Layers.VariancePredictor import VariancePredictor
|
10 |
+
from ...Utility.utils import make_non_pad_mask
|
11 |
+
from ...Utility.utils import make_pad_mask
|
12 |
+
|
13 |
+
|
14 |
+
class FastSpeech2(torch.nn.Module, ABC):
|
15 |
+
|
16 |
+
def __init__(self, # network structure related
|
17 |
+
weights,
|
18 |
+
idim=66,
|
19 |
+
odim=80,
|
20 |
+
adim=384,
|
21 |
+
aheads=4,
|
22 |
+
elayers=6,
|
23 |
+
eunits=1536,
|
24 |
+
dlayers=6,
|
25 |
+
dunits=1536,
|
26 |
+
postnet_layers=5,
|
27 |
+
postnet_chans=256,
|
28 |
+
postnet_filts=5,
|
29 |
+
positionwise_conv_kernel_size=1,
|
30 |
+
use_scaled_pos_enc=True,
|
31 |
+
use_batch_norm=True,
|
32 |
+
encoder_normalize_before=True,
|
33 |
+
decoder_normalize_before=True,
|
34 |
+
encoder_concat_after=False,
|
35 |
+
decoder_concat_after=False,
|
36 |
+
reduction_factor=1,
|
37 |
+
# encoder / decoder
|
38 |
+
use_macaron_style_in_conformer=True,
|
39 |
+
use_cnn_in_conformer=True,
|
40 |
+
conformer_enc_kernel_size=7,
|
41 |
+
conformer_dec_kernel_size=31,
|
42 |
+
# duration predictor
|
43 |
+
duration_predictor_layers=2,
|
44 |
+
duration_predictor_chans=256,
|
45 |
+
duration_predictor_kernel_size=3,
|
46 |
+
# energy predictor
|
47 |
+
energy_predictor_layers=2,
|
48 |
+
energy_predictor_chans=256,
|
49 |
+
energy_predictor_kernel_size=3,
|
50 |
+
energy_predictor_dropout=0.5,
|
51 |
+
energy_embed_kernel_size=1,
|
52 |
+
energy_embed_dropout=0.0,
|
53 |
+
stop_gradient_from_energy_predictor=True,
|
54 |
+
# pitch predictor
|
55 |
+
pitch_predictor_layers=5,
|
56 |
+
pitch_predictor_chans=256,
|
57 |
+
pitch_predictor_kernel_size=5,
|
58 |
+
pitch_predictor_dropout=0.5,
|
59 |
+
pitch_embed_kernel_size=1,
|
60 |
+
pitch_embed_dropout=0.0,
|
61 |
+
stop_gradient_from_pitch_predictor=True,
|
62 |
+
# training related
|
63 |
+
transformer_enc_dropout_rate=0.2,
|
64 |
+
transformer_enc_positional_dropout_rate=0.2,
|
65 |
+
transformer_enc_attn_dropout_rate=0.2,
|
66 |
+
transformer_dec_dropout_rate=0.2,
|
67 |
+
transformer_dec_positional_dropout_rate=0.2,
|
68 |
+
transformer_dec_attn_dropout_rate=0.2,
|
69 |
+
duration_predictor_dropout_rate=0.2,
|
70 |
+
postnet_dropout_rate=0.5,
|
71 |
+
# additional features
|
72 |
+
utt_embed_dim=704,
|
73 |
+
connect_utt_emb_at_encoder_out=True,
|
74 |
+
lang_embs=100):
|
75 |
+
super().__init__()
|
76 |
+
self.idim = idim
|
77 |
+
self.odim = odim
|
78 |
+
self.reduction_factor = reduction_factor
|
79 |
+
self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor
|
80 |
+
self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor
|
81 |
+
self.use_scaled_pos_enc = use_scaled_pos_enc
|
82 |
+
embed = torch.nn.Sequential(torch.nn.Linear(idim, 100),
|
83 |
+
torch.nn.Tanh(),
|
84 |
+
torch.nn.Linear(100, adim))
|
85 |
+
self.encoder = Conformer(idim=idim, attention_dim=adim, attention_heads=aheads, linear_units=eunits, num_blocks=elayers,
|
86 |
+
input_layer=embed, dropout_rate=transformer_enc_dropout_rate,
|
87 |
+
positional_dropout_rate=transformer_enc_positional_dropout_rate, attention_dropout_rate=transformer_enc_attn_dropout_rate,
|
88 |
+
normalize_before=encoder_normalize_before, concat_after=encoder_concat_after,
|
89 |
+
positionwise_conv_kernel_size=positionwise_conv_kernel_size, macaron_style=use_macaron_style_in_conformer,
|
90 |
+
use_cnn_module=use_cnn_in_conformer, cnn_module_kernel=conformer_enc_kernel_size, zero_triu=False,
|
91 |
+
utt_embed=utt_embed_dim, connect_utt_emb_at_encoder_out=connect_utt_emb_at_encoder_out, lang_embs=lang_embs)
|
92 |
+
self.duration_predictor = DurationPredictor(idim=adim, n_layers=duration_predictor_layers,
|
93 |
+
n_chans=duration_predictor_chans,
|
94 |
+
kernel_size=duration_predictor_kernel_size,
|
95 |
+
dropout_rate=duration_predictor_dropout_rate, )
|
96 |
+
self.pitch_predictor = VariancePredictor(idim=adim, n_layers=pitch_predictor_layers,
|
97 |
+
n_chans=pitch_predictor_chans,
|
98 |
+
kernel_size=pitch_predictor_kernel_size,
|
99 |
+
dropout_rate=pitch_predictor_dropout)
|
100 |
+
self.pitch_embed = torch.nn.Sequential(torch.nn.Conv1d(in_channels=1, out_channels=adim,
|
101 |
+
kernel_size=pitch_embed_kernel_size,
|
102 |
+
padding=(pitch_embed_kernel_size - 1) // 2),
|
103 |
+
torch.nn.Dropout(pitch_embed_dropout))
|
104 |
+
self.energy_predictor = VariancePredictor(idim=adim, n_layers=energy_predictor_layers,
|
105 |
+
n_chans=energy_predictor_chans,
|
106 |
+
kernel_size=energy_predictor_kernel_size,
|
107 |
+
dropout_rate=energy_predictor_dropout)
|
108 |
+
self.energy_embed = torch.nn.Sequential(torch.nn.Conv1d(in_channels=1, out_channels=adim,
|
109 |
+
kernel_size=energy_embed_kernel_size,
|
110 |
+
padding=(energy_embed_kernel_size - 1) // 2),
|
111 |
+
torch.nn.Dropout(energy_embed_dropout))
|
112 |
+
self.length_regulator = LengthRegulator()
|
113 |
+
self.decoder = Conformer(idim=0,
|
114 |
+
attention_dim=adim,
|
115 |
+
attention_heads=aheads,
|
116 |
+
linear_units=dunits,
|
117 |
+
num_blocks=dlayers,
|
118 |
+
input_layer=None,
|
119 |
+
dropout_rate=transformer_dec_dropout_rate,
|
120 |
+
positional_dropout_rate=transformer_dec_positional_dropout_rate,
|
121 |
+
attention_dropout_rate=transformer_dec_attn_dropout_rate,
|
122 |
+
normalize_before=decoder_normalize_before,
|
123 |
+
concat_after=decoder_concat_after,
|
124 |
+
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
|
125 |
+
macaron_style=use_macaron_style_in_conformer,
|
126 |
+
use_cnn_module=use_cnn_in_conformer,
|
127 |
+
cnn_module_kernel=conformer_dec_kernel_size)
|
128 |
+
self.feat_out = torch.nn.Linear(adim, odim * reduction_factor)
|
129 |
+
self.postnet = PostNet(idim=idim,
|
130 |
+
odim=odim,
|
131 |
+
n_layers=postnet_layers,
|
132 |
+
n_chans=postnet_chans,
|
133 |
+
n_filts=postnet_filts,
|
134 |
+
use_batch_norm=use_batch_norm,
|
135 |
+
dropout_rate=postnet_dropout_rate)
|
136 |
+
self.load_state_dict(weights)
|
137 |
+
|
138 |
+
def _forward(self, text_tensors, text_lens, gold_speech=None, speech_lens=None,
|
139 |
+
gold_durations=None, gold_pitch=None, gold_energy=None,
|
140 |
+
is_inference=False, alpha=1.0, utterance_embedding=None, lang_ids=None):
|
141 |
+
# forward encoder
|
142 |
+
text_masks = self._source_mask(text_lens)
|
143 |
+
|
144 |
+
encoded_texts, _ = self.encoder(text_tensors, text_masks, utterance_embedding=utterance_embedding, lang_ids=lang_ids) # (B, Tmax, adim)
|
145 |
+
|
146 |
+
# forward duration predictor and variance predictors
|
147 |
+
duration_masks = make_pad_mask(text_lens, device=text_lens.device)
|
148 |
+
|
149 |
+
if self.stop_gradient_from_pitch_predictor:
|
150 |
+
pitch_predictions = self.pitch_predictor(encoded_texts.detach(), duration_masks.unsqueeze(-1))
|
151 |
+
else:
|
152 |
+
pitch_predictions = self.pitch_predictor(encoded_texts, duration_masks.unsqueeze(-1))
|
153 |
+
|
154 |
+
if self.stop_gradient_from_energy_predictor:
|
155 |
+
energy_predictions = self.energy_predictor(encoded_texts.detach(), duration_masks.unsqueeze(-1))
|
156 |
+
else:
|
157 |
+
energy_predictions = self.energy_predictor(encoded_texts, duration_masks.unsqueeze(-1))
|
158 |
+
|
159 |
+
if is_inference:
|
160 |
+
if gold_durations is not None:
|
161 |
+
duration_predictions = gold_durations
|
162 |
+
else:
|
163 |
+
duration_predictions = self.duration_predictor.inference(encoded_texts, duration_masks)
|
164 |
+
if gold_pitch is not None:
|
165 |
+
pitch_predictions = gold_pitch
|
166 |
+
if gold_energy is not None:
|
167 |
+
energy_predictions = gold_energy
|
168 |
+
pitch_embeddings = self.pitch_embed(pitch_predictions.transpose(1, 2)).transpose(1, 2)
|
169 |
+
energy_embeddings = self.energy_embed(energy_predictions.transpose(1, 2)).transpose(1, 2)
|
170 |
+
encoded_texts = encoded_texts + energy_embeddings + pitch_embeddings
|
171 |
+
encoded_texts = self.length_regulator(encoded_texts, duration_predictions, alpha)
|
172 |
+
else:
|
173 |
+
duration_predictions = self.duration_predictor(encoded_texts, duration_masks)
|
174 |
+
|
175 |
+
# use groundtruth in training
|
176 |
+
pitch_embeddings = self.pitch_embed(gold_pitch.transpose(1, 2)).transpose(1, 2)
|
177 |
+
energy_embeddings = self.energy_embed(gold_energy.transpose(1, 2)).transpose(1, 2)
|
178 |
+
encoded_texts = encoded_texts + energy_embeddings + pitch_embeddings
|
179 |
+
encoded_texts = self.length_regulator(encoded_texts, gold_durations) # (B, Lmax, adim)
|
180 |
+
|
181 |
+
# forward decoder
|
182 |
+
if speech_lens is not None and not is_inference:
|
183 |
+
if self.reduction_factor > 1:
|
184 |
+
olens_in = speech_lens.new([olen // self.reduction_factor for olen in speech_lens])
|
185 |
+
else:
|
186 |
+
olens_in = speech_lens
|
187 |
+
h_masks = self._source_mask(olens_in)
|
188 |
+
else:
|
189 |
+
h_masks = None
|
190 |
+
zs, _ = self.decoder(encoded_texts, h_masks) # (B, Lmax, adim)
|
191 |
+
before_outs = self.feat_out(zs).view(zs.size(0), -1, self.odim) # (B, Lmax, odim)
|
192 |
+
|
193 |
+
# postnet -> (B, Lmax//r * r, odim)
|
194 |
+
after_outs = before_outs + self.postnet(before_outs.transpose(1, 2)).transpose(1, 2)
|
195 |
+
|
196 |
+
return before_outs, after_outs, duration_predictions, pitch_predictions, energy_predictions
|
197 |
+
|
198 |
+
@torch.no_grad()
|
199 |
+
def forward(self,
|
200 |
+
text,
|
201 |
+
speech=None,
|
202 |
+
durations=None,
|
203 |
+
pitch=None,
|
204 |
+
energy=None,
|
205 |
+
utterance_embedding=None,
|
206 |
+
return_duration_pitch_energy=False,
|
207 |
+
lang_id=None):
|
208 |
+
"""
|
209 |
+
Generate the sequence of features given the sequences of characters.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
text: Input sequence of characters
|
213 |
+
speech: Feature sequence to extract style
|
214 |
+
durations: Groundtruth of duration
|
215 |
+
pitch: Groundtruth of token-averaged pitch
|
216 |
+
energy: Groundtruth of token-averaged energy
|
217 |
+
return_duration_pitch_energy: whether to return the list of predicted durations for nicer plotting
|
218 |
+
utterance_embedding: embedding of utterance wide parameters
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
Mel Spectrogram
|
222 |
+
|
223 |
+
"""
|
224 |
+
self.eval()
|
225 |
+
# setup batch axis
|
226 |
+
ilens = torch.tensor([text.shape[0]], dtype=torch.long, device=text.device)
|
227 |
+
if speech is not None:
|
228 |
+
gold_speech = speech.unsqueeze(0)
|
229 |
+
else:
|
230 |
+
gold_speech = None
|
231 |
+
if durations is not None:
|
232 |
+
durations = durations.unsqueeze(0)
|
233 |
+
if pitch is not None:
|
234 |
+
pitch = pitch.unsqueeze(0)
|
235 |
+
if energy is not None:
|
236 |
+
energy = energy.unsqueeze(0)
|
237 |
+
if lang_id is not None:
|
238 |
+
lang_id = lang_id.unsqueeze(0)
|
239 |
+
|
240 |
+
before_outs, after_outs, d_outs, pitch_predictions, energy_predictions = self._forward(text.unsqueeze(0),
|
241 |
+
ilens,
|
242 |
+
gold_speech=gold_speech,
|
243 |
+
gold_durations=durations,
|
244 |
+
is_inference=True,
|
245 |
+
gold_pitch=pitch,
|
246 |
+
gold_energy=energy,
|
247 |
+
utterance_embedding=utterance_embedding.unsqueeze(0),
|
248 |
+
lang_ids=lang_id)
|
249 |
+
self.train()
|
250 |
+
if return_duration_pitch_energy:
|
251 |
+
return after_outs[0], d_outs[0], pitch_predictions[0], energy_predictions[0]
|
252 |
+
return after_outs[0]
|
253 |
+
|
254 |
+
def _source_mask(self, ilens):
|
255 |
+
x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device)
|
256 |
+
return x_masks.unsqueeze(-2)
|
IMSToucan/InferenceInterfaces/InferenceArchitectures/InferenceHiFiGAN.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ...Layers.ResidualBlock import HiFiGANResidualBlock as ResidualBlock
|
4 |
+
|
5 |
+
|
6 |
+
class HiFiGANGenerator(torch.nn.Module):
|
7 |
+
|
8 |
+
def __init__(self,
|
9 |
+
path_to_weights,
|
10 |
+
in_channels=80,
|
11 |
+
out_channels=1,
|
12 |
+
channels=512,
|
13 |
+
kernel_size=7,
|
14 |
+
upsample_scales=(8, 6, 4, 4),
|
15 |
+
upsample_kernel_sizes=(16, 12, 8, 8),
|
16 |
+
resblock_kernel_sizes=(3, 7, 11),
|
17 |
+
resblock_dilations=[(1, 3, 5), (1, 3, 5), (1, 3, 5)],
|
18 |
+
use_additional_convs=True,
|
19 |
+
bias=True,
|
20 |
+
nonlinear_activation="LeakyReLU",
|
21 |
+
nonlinear_activation_params={"negative_slope": 0.1},
|
22 |
+
use_weight_norm=True, ):
|
23 |
+
super().__init__()
|
24 |
+
assert kernel_size % 2 == 1, "Kernal size must be odd number."
|
25 |
+
assert len(upsample_scales) == len(upsample_kernel_sizes)
|
26 |
+
assert len(resblock_dilations) == len(resblock_kernel_sizes)
|
27 |
+
self.num_upsamples = len(upsample_kernel_sizes)
|
28 |
+
self.num_blocks = len(resblock_kernel_sizes)
|
29 |
+
self.input_conv = torch.nn.Conv1d(in_channels,
|
30 |
+
channels,
|
31 |
+
kernel_size,
|
32 |
+
1,
|
33 |
+
padding=(kernel_size - 1) // 2, )
|
34 |
+
self.upsamples = torch.nn.ModuleList()
|
35 |
+
self.blocks = torch.nn.ModuleList()
|
36 |
+
for i in range(len(upsample_kernel_sizes)):
|
37 |
+
self.upsamples += [
|
38 |
+
torch.nn.Sequential(getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
|
39 |
+
torch.nn.ConvTranspose1d(channels // (2 ** i),
|
40 |
+
channels // (2 ** (i + 1)),
|
41 |
+
upsample_kernel_sizes[i],
|
42 |
+
upsample_scales[i],
|
43 |
+
padding=(upsample_kernel_sizes[i] - upsample_scales[i]) // 2, ), )]
|
44 |
+
for j in range(len(resblock_kernel_sizes)):
|
45 |
+
self.blocks += [ResidualBlock(kernel_size=resblock_kernel_sizes[j],
|
46 |
+
channels=channels // (2 ** (i + 1)),
|
47 |
+
dilations=resblock_dilations[j],
|
48 |
+
bias=bias,
|
49 |
+
use_additional_convs=use_additional_convs,
|
50 |
+
nonlinear_activation=nonlinear_activation,
|
51 |
+
nonlinear_activation_params=nonlinear_activation_params, )]
|
52 |
+
self.output_conv = torch.nn.Sequential(
|
53 |
+
torch.nn.LeakyReLU(),
|
54 |
+
torch.nn.Conv1d(channels // (2 ** (i + 1)),
|
55 |
+
out_channels,
|
56 |
+
kernel_size,
|
57 |
+
1,
|
58 |
+
padding=(kernel_size - 1) // 2, ),
|
59 |
+
torch.nn.Tanh(), )
|
60 |
+
if use_weight_norm:
|
61 |
+
self.apply_weight_norm()
|
62 |
+
self.load_state_dict(torch.load(path_to_weights, map_location='cpu')["generator"])
|
63 |
+
|
64 |
+
def forward(self, c, normalize_before=False):
|
65 |
+
if normalize_before:
|
66 |
+
c = (c - self.mean) / self.scale
|
67 |
+
c = self.input_conv(c.unsqueeze(0))
|
68 |
+
for i in range(self.num_upsamples):
|
69 |
+
c = self.upsamples[i](c)
|
70 |
+
cs = 0.0 # initialize
|
71 |
+
for j in range(self.num_blocks):
|
72 |
+
cs = cs + self.blocks[i * self.num_blocks + j](c)
|
73 |
+
c = cs / self.num_blocks
|
74 |
+
c = self.output_conv(c)
|
75 |
+
return c.squeeze(0).squeeze(0)
|
76 |
+
|
77 |
+
def remove_weight_norm(self):
|
78 |
+
def _remove_weight_norm(m):
|
79 |
+
try:
|
80 |
+
torch.nn.utils.remove_weight_norm(m)
|
81 |
+
except ValueError:
|
82 |
+
return
|
83 |
+
|
84 |
+
self.apply(_remove_weight_norm)
|
85 |
+
|
86 |
+
def apply_weight_norm(self):
|
87 |
+
def _apply_weight_norm(m):
|
88 |
+
if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.ConvTranspose1d):
|
89 |
+
torch.nn.utils.weight_norm(m)
|
90 |
+
|
91 |
+
self.apply(_apply_weight_norm)
|
IMSToucan/InferenceInterfaces/InferenceArchitectures/__init__.py
ADDED
File without changes
|
IMSToucan/InferenceInterfaces/__init__.py
ADDED
File without changes
|
IMSToucan/LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright for most of the PyTorch modules: 2017 Johns Hopkins University (Shinji Watanabe)
|
190 |
+
Copyright for the rest: 2021 University of Stuttgart (Florian Lux)
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
IMSToucan/Layers/Attention.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Written by Shigeki Karita, 2019
|
2 |
+
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
3 |
+
# Adapted by Florian Lux, 2021
|
4 |
+
|
5 |
+
"""Multi-Head Attention layer definition."""
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import numpy
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from ..Utility.utils import make_non_pad_mask
|
14 |
+
|
15 |
+
|
16 |
+
class MultiHeadedAttention(nn.Module):
|
17 |
+
"""
|
18 |
+
Multi-Head Attention layer.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
n_head (int): The number of heads.
|
22 |
+
n_feat (int): The number of features.
|
23 |
+
dropout_rate (float): Dropout rate.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, n_head, n_feat, dropout_rate):
|
27 |
+
"""
|
28 |
+
Construct an MultiHeadedAttention object.
|
29 |
+
"""
|
30 |
+
super(MultiHeadedAttention, self).__init__()
|
31 |
+
assert n_feat % n_head == 0
|
32 |
+
# We assume d_v always equals d_k
|
33 |
+
self.d_k = n_feat // n_head
|
34 |
+
self.h = n_head
|
35 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
36 |
+
self.linear_k = nn.Linear(n_feat, n_feat)
|
37 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
38 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
39 |
+
self.attn = None
|
40 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
41 |
+
|
42 |
+
def forward_qkv(self, query, key, value):
|
43 |
+
"""
|
44 |
+
Transform query, key and value.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
48 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
49 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k).
|
53 |
+
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k).
|
54 |
+
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k).
|
55 |
+
"""
|
56 |
+
n_batch = query.size(0)
|
57 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
58 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
59 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
60 |
+
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
61 |
+
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
62 |
+
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
63 |
+
|
64 |
+
return q, k, v
|
65 |
+
|
66 |
+
def forward_attention(self, value, scores, mask):
|
67 |
+
"""
|
68 |
+
Compute attention context vector.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k).
|
72 |
+
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2).
|
73 |
+
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2).
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
torch.Tensor: Transformed value (#batch, time1, d_model)
|
77 |
+
weighted by the attention score (#batch, time1, time2).
|
78 |
+
"""
|
79 |
+
n_batch = value.size(0)
|
80 |
+
if mask is not None:
|
81 |
+
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
82 |
+
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
83 |
+
scores = scores.masked_fill(mask, min_value)
|
84 |
+
self.attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0) # (batch, head, time1, time2)
|
85 |
+
else:
|
86 |
+
self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
87 |
+
|
88 |
+
p_attn = self.dropout(self.attn)
|
89 |
+
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
90 |
+
x = (x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)) # (batch, time1, d_model)
|
91 |
+
|
92 |
+
return self.linear_out(x) # (batch, time1, d_model)
|
93 |
+
|
94 |
+
def forward(self, query, key, value, mask):
|
95 |
+
"""
|
96 |
+
Compute scaled dot product attention.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
100 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
101 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
102 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
103 |
+
(#batch, time1, time2).
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
107 |
+
"""
|
108 |
+
q, k, v = self.forward_qkv(query, key, value)
|
109 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
110 |
+
return self.forward_attention(v, scores, mask)
|
111 |
+
|
112 |
+
|
113 |
+
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
114 |
+
"""
|
115 |
+
Multi-Head Attention layer with relative position encoding.
|
116 |
+
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
117 |
+
Paper: https://arxiv.org/abs/1901.02860
|
118 |
+
Args:
|
119 |
+
n_head (int): The number of heads.
|
120 |
+
n_feat (int): The number of features.
|
121 |
+
dropout_rate (float): Dropout rate.
|
122 |
+
zero_triu (bool): Whether to zero the upper triangular part of attention matrix.
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False):
|
126 |
+
"""Construct an RelPositionMultiHeadedAttention object."""
|
127 |
+
super().__init__(n_head, n_feat, dropout_rate)
|
128 |
+
self.zero_triu = zero_triu
|
129 |
+
# linear transformation for positional encoding
|
130 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
131 |
+
# these two learnable bias are used in matrix c and matrix d
|
132 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
133 |
+
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
134 |
+
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
135 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
136 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
137 |
+
|
138 |
+
def rel_shift(self, x):
|
139 |
+
"""
|
140 |
+
Compute relative positional encoding.
|
141 |
+
Args:
|
142 |
+
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
143 |
+
time1 means the length of query vector.
|
144 |
+
Returns:
|
145 |
+
torch.Tensor: Output tensor.
|
146 |
+
"""
|
147 |
+
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
148 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
149 |
+
|
150 |
+
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
151 |
+
x = x_padded[:, :, 1:].view_as(x)[:, :, :, : x.size(-1) // 2 + 1] # only keep the positions from 0 to time2
|
152 |
+
|
153 |
+
if self.zero_triu:
|
154 |
+
ones = torch.ones((x.size(2), x.size(3)), device=x.device)
|
155 |
+
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
|
156 |
+
|
157 |
+
return x
|
158 |
+
|
159 |
+
def forward(self, query, key, value, pos_emb, mask):
|
160 |
+
"""
|
161 |
+
Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
162 |
+
Args:
|
163 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
164 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
165 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
166 |
+
pos_emb (torch.Tensor): Positional embedding tensor
|
167 |
+
(#batch, 2*time1-1, size).
|
168 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
169 |
+
(#batch, time1, time2).
|
170 |
+
Returns:
|
171 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
172 |
+
"""
|
173 |
+
q, k, v = self.forward_qkv(query, key, value)
|
174 |
+
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
175 |
+
|
176 |
+
n_batch_pos = pos_emb.size(0)
|
177 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
178 |
+
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
179 |
+
|
180 |
+
# (batch, head, time1, d_k)
|
181 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
182 |
+
# (batch, head, time1, d_k)
|
183 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
184 |
+
|
185 |
+
# compute attention score
|
186 |
+
# first compute matrix a and matrix c
|
187 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
188 |
+
# (batch, head, time1, time2)
|
189 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
190 |
+
|
191 |
+
# compute matrix b and matrix d
|
192 |
+
# (batch, head, time1, 2*time1-1)
|
193 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
194 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
195 |
+
|
196 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
|
197 |
+
|
198 |
+
return self.forward_attention(v, scores, mask)
|
199 |
+
|
200 |
+
|
201 |
+
class GuidedAttentionLoss(torch.nn.Module):
|
202 |
+
"""
|
203 |
+
Guided attention loss function module.
|
204 |
+
|
205 |
+
This module calculates the guided attention loss described
|
206 |
+
in `Efficiently Trainable Text-to-Speech System Based
|
207 |
+
on Deep Convolutional Networks with Guided Attention`_,
|
208 |
+
which forces the attention to be diagonal.
|
209 |
+
|
210 |
+
.. _`Efficiently Trainable Text-to-Speech System
|
211 |
+
Based on Deep Convolutional Networks with Guided Attention`:
|
212 |
+
https://arxiv.org/abs/1710.08969
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, sigma=0.4, alpha=1.0):
|
216 |
+
"""
|
217 |
+
Initialize guided attention loss module.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
sigma (float, optional): Standard deviation to control
|
221 |
+
how close attention to a diagonal.
|
222 |
+
alpha (float, optional): Scaling coefficient (lambda).
|
223 |
+
reset_always (bool, optional): Whether to always reset masks.
|
224 |
+
"""
|
225 |
+
super(GuidedAttentionLoss, self).__init__()
|
226 |
+
self.sigma = sigma
|
227 |
+
self.alpha = alpha
|
228 |
+
self.guided_attn_masks = None
|
229 |
+
self.masks = None
|
230 |
+
|
231 |
+
def _reset_masks(self):
|
232 |
+
self.guided_attn_masks = None
|
233 |
+
self.masks = None
|
234 |
+
|
235 |
+
def forward(self, att_ws, ilens, olens):
|
236 |
+
"""
|
237 |
+
Calculate forward propagation.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
att_ws (Tensor): Batch of attention weights (B, T_max_out, T_max_in).
|
241 |
+
ilens (LongTensor): Batch of input lenghts (B,).
|
242 |
+
olens (LongTensor): Batch of output lenghts (B,).
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
Tensor: Guided attention loss value.
|
246 |
+
"""
|
247 |
+
self._reset_masks()
|
248 |
+
self.guided_attn_masks = self._make_guided_attention_masks(ilens, olens).to(att_ws.device)
|
249 |
+
self.masks = self._make_masks(ilens, olens).to(att_ws.device)
|
250 |
+
losses = self.guided_attn_masks * att_ws
|
251 |
+
loss = torch.mean(losses.masked_select(self.masks))
|
252 |
+
self._reset_masks()
|
253 |
+
return self.alpha * loss
|
254 |
+
|
255 |
+
def _make_guided_attention_masks(self, ilens, olens):
|
256 |
+
n_batches = len(ilens)
|
257 |
+
max_ilen = max(ilens)
|
258 |
+
max_olen = max(olens)
|
259 |
+
guided_attn_masks = torch.zeros((n_batches, max_olen, max_ilen), device=ilens.device)
|
260 |
+
for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
|
261 |
+
guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma)
|
262 |
+
return guided_attn_masks
|
263 |
+
|
264 |
+
@staticmethod
|
265 |
+
def _make_guided_attention_mask(ilen, olen, sigma):
|
266 |
+
"""
|
267 |
+
Make guided attention mask.
|
268 |
+
"""
|
269 |
+
grid_x, grid_y = torch.meshgrid(torch.arange(olen, device=olen.device).float(), torch.arange(ilen, device=ilen.device).float())
|
270 |
+
return 1.0 - torch.exp(-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma ** 2)))
|
271 |
+
|
272 |
+
@staticmethod
|
273 |
+
def _make_masks(ilens, olens):
|
274 |
+
"""
|
275 |
+
Make masks indicating non-padded part.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
ilens (LongTensor or List): Batch of lengths (B,).
|
279 |
+
olens (LongTensor or List): Batch of lengths (B,).
|
280 |
+
|
281 |
+
Returns:
|
282 |
+
Tensor: Mask tensor indicating non-padded part.
|
283 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
284 |
+
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
|
285 |
+
"""
|
286 |
+
in_masks = make_non_pad_mask(ilens, device=ilens.device) # (B, T_in)
|
287 |
+
out_masks = make_non_pad_mask(olens, device=olens.device) # (B, T_out)
|
288 |
+
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2) # (B, T_out, T_in)
|
289 |
+
|
290 |
+
|
291 |
+
class GuidedMultiHeadAttentionLoss(GuidedAttentionLoss):
|
292 |
+
"""
|
293 |
+
Guided attention loss function module for multi head attention.
|
294 |
+
|
295 |
+
Args:
|
296 |
+
sigma (float, optional): Standard deviation to control
|
297 |
+
how close attention to a diagonal.
|
298 |
+
alpha (float, optional): Scaling coefficient (lambda).
|
299 |
+
reset_always (bool, optional): Whether to always reset masks.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def forward(self, att_ws, ilens, olens):
|
303 |
+
"""
|
304 |
+
Calculate forward propagation.
|
305 |
+
|
306 |
+
Args:
|
307 |
+
att_ws (Tensor):
|
308 |
+
Batch of multi head attention weights (B, H, T_max_out, T_max_in).
|
309 |
+
ilens (LongTensor): Batch of input lenghts (B,).
|
310 |
+
olens (LongTensor): Batch of output lenghts (B,).
|
311 |
+
|
312 |
+
Returns:
|
313 |
+
Tensor: Guided attention loss value.
|
314 |
+
"""
|
315 |
+
if self.guided_attn_masks is None:
|
316 |
+
self.guided_attn_masks = (self._make_guided_attention_masks(ilens, olens).to(att_ws.device).unsqueeze(1))
|
317 |
+
if self.masks is None:
|
318 |
+
self.masks = self._make_masks(ilens, olens).to(att_ws.device).unsqueeze(1)
|
319 |
+
losses = self.guided_attn_masks * att_ws
|
320 |
+
loss = torch.mean(losses.masked_select(self.masks))
|
321 |
+
if self.reset_always:
|
322 |
+
self._reset_masks()
|
323 |
+
|
324 |
+
return self.alpha * loss
|
IMSToucan/Layers/Conformer.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Taken from ESPNet
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from .Attention import RelPositionMultiHeadedAttention
|
9 |
+
from .Convolution import ConvolutionModule
|
10 |
+
from .EncoderLayer import EncoderLayer
|
11 |
+
from .LayerNorm import LayerNorm
|
12 |
+
from .MultiLayeredConv1d import MultiLayeredConv1d
|
13 |
+
from .MultiSequential import repeat
|
14 |
+
from .PositionalEncoding import RelPositionalEncoding
|
15 |
+
from .Swish import Swish
|
16 |
+
|
17 |
+
|
18 |
+
class Conformer(torch.nn.Module):
|
19 |
+
"""
|
20 |
+
Conformer encoder module.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
idim (int): Input dimension.
|
24 |
+
attention_dim (int): Dimension of attention.
|
25 |
+
attention_heads (int): The number of heads of multi head attention.
|
26 |
+
linear_units (int): The number of units of position-wise feed forward.
|
27 |
+
num_blocks (int): The number of decoder blocks.
|
28 |
+
dropout_rate (float): Dropout rate.
|
29 |
+
positional_dropout_rate (float): Dropout rate after adding positional encoding.
|
30 |
+
attention_dropout_rate (float): Dropout rate in attention.
|
31 |
+
input_layer (Union[str, torch.nn.Module]): Input layer type.
|
32 |
+
normalize_before (bool): Whether to use layer_norm before the first block.
|
33 |
+
concat_after (bool): Whether to concat attention layer's input and output.
|
34 |
+
if True, additional linear will be applied.
|
35 |
+
i.e. x -> x + linear(concat(x, att(x)))
|
36 |
+
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
37 |
+
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
|
38 |
+
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
|
39 |
+
macaron_style (bool): Whether to use macaron style for positionwise layer.
|
40 |
+
pos_enc_layer_type (str): Conformer positional encoding layer type.
|
41 |
+
selfattention_layer_type (str): Conformer attention layer type.
|
42 |
+
activation_type (str): Conformer activation function type.
|
43 |
+
use_cnn_module (bool): Whether to use convolution module.
|
44 |
+
cnn_module_kernel (int): Kernerl size of convolution module.
|
45 |
+
padding_idx (int): Padding idx for input_layer=embed.
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self, idim, attention_dim=256, attention_heads=4, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1,
|
50 |
+
attention_dropout_rate=0.0, input_layer="conv2d", normalize_before=True, concat_after=False, positionwise_conv_kernel_size=1,
|
51 |
+
macaron_style=False, use_cnn_module=False, cnn_module_kernel=31, zero_triu=False, utt_embed=None, connect_utt_emb_at_encoder_out=True,
|
52 |
+
spk_emb_bottleneck_size=128, lang_embs=None):
|
53 |
+
super(Conformer, self).__init__()
|
54 |
+
|
55 |
+
activation = Swish()
|
56 |
+
self.conv_subsampling_factor = 1
|
57 |
+
|
58 |
+
if isinstance(input_layer, torch.nn.Module):
|
59 |
+
self.embed = input_layer
|
60 |
+
self.pos_enc = RelPositionalEncoding(attention_dim, positional_dropout_rate)
|
61 |
+
elif input_layer is None:
|
62 |
+
self.embed = None
|
63 |
+
self.pos_enc = torch.nn.Sequential(RelPositionalEncoding(attention_dim, positional_dropout_rate))
|
64 |
+
else:
|
65 |
+
raise ValueError("unknown input_layer: " + input_layer)
|
66 |
+
|
67 |
+
self.normalize_before = normalize_before
|
68 |
+
|
69 |
+
self.connect_utt_emb_at_encoder_out = connect_utt_emb_at_encoder_out
|
70 |
+
if utt_embed is not None:
|
71 |
+
self.hs_emb_projection = torch.nn.Linear(attention_dim + spk_emb_bottleneck_size, attention_dim)
|
72 |
+
# embedding projection derived from https://arxiv.org/pdf/1705.08947.pdf
|
73 |
+
self.embedding_projection = torch.nn.Sequential(torch.nn.Linear(utt_embed, spk_emb_bottleneck_size),
|
74 |
+
torch.nn.Softsign())
|
75 |
+
if lang_embs is not None:
|
76 |
+
self.language_embedding = torch.nn.Embedding(num_embeddings=lang_embs, embedding_dim=attention_dim)
|
77 |
+
|
78 |
+
# self-attention module definition
|
79 |
+
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
80 |
+
encoder_selfattn_layer_args = (attention_heads, attention_dim, attention_dropout_rate, zero_triu)
|
81 |
+
|
82 |
+
# feed-forward module definition
|
83 |
+
positionwise_layer = MultiLayeredConv1d
|
84 |
+
positionwise_layer_args = (attention_dim, linear_units, positionwise_conv_kernel_size, dropout_rate,)
|
85 |
+
|
86 |
+
# convolution module definition
|
87 |
+
convolution_layer = ConvolutionModule
|
88 |
+
convolution_layer_args = (attention_dim, cnn_module_kernel, activation)
|
89 |
+
|
90 |
+
self.encoders = repeat(num_blocks, lambda lnum: EncoderLayer(attention_dim, encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
91 |
+
positionwise_layer(*positionwise_layer_args),
|
92 |
+
positionwise_layer(*positionwise_layer_args) if macaron_style else None,
|
93 |
+
convolution_layer(*convolution_layer_args) if use_cnn_module else None, dropout_rate,
|
94 |
+
normalize_before, concat_after))
|
95 |
+
if self.normalize_before:
|
96 |
+
self.after_norm = LayerNorm(attention_dim)
|
97 |
+
|
98 |
+
def forward(self, xs, masks, utterance_embedding=None, lang_ids=None):
|
99 |
+
"""
|
100 |
+
Encode input sequence.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
utterance_embedding: embedding containing lots of conditioning signals
|
104 |
+
step: indicator for when to start updating the embedding function
|
105 |
+
xs (torch.Tensor): Input tensor (#batch, time, idim).
|
106 |
+
masks (torch.Tensor): Mask tensor (#batch, time).
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
torch.Tensor: Output tensor (#batch, time, attention_dim).
|
110 |
+
torch.Tensor: Mask tensor (#batch, time).
|
111 |
+
|
112 |
+
"""
|
113 |
+
|
114 |
+
if self.embed is not None:
|
115 |
+
xs = self.embed(xs)
|
116 |
+
|
117 |
+
if lang_ids is not None:
|
118 |
+
lang_embs = self.language_embedding(lang_ids)
|
119 |
+
xs = xs + lang_embs # offset the phoneme distribution of a language
|
120 |
+
|
121 |
+
if utterance_embedding is not None and not self.connect_utt_emb_at_encoder_out:
|
122 |
+
xs = self._integrate_with_utt_embed(xs, utterance_embedding)
|
123 |
+
|
124 |
+
xs = self.pos_enc(xs)
|
125 |
+
|
126 |
+
xs, masks = self.encoders(xs, masks)
|
127 |
+
if isinstance(xs, tuple):
|
128 |
+
xs = xs[0]
|
129 |
+
|
130 |
+
if self.normalize_before:
|
131 |
+
xs = self.after_norm(xs)
|
132 |
+
|
133 |
+
if utterance_embedding is not None and self.connect_utt_emb_at_encoder_out:
|
134 |
+
xs = self._integrate_with_utt_embed(xs, utterance_embedding)
|
135 |
+
|
136 |
+
return xs, masks
|
137 |
+
|
138 |
+
def _integrate_with_utt_embed(self, hs, utt_embeddings):
|
139 |
+
# project embedding into smaller space
|
140 |
+
speaker_embeddings_projected = self.embedding_projection(utt_embeddings)
|
141 |
+
# concat hidden states with spk embeds and then apply projection
|
142 |
+
speaker_embeddings_expanded = F.normalize(speaker_embeddings_projected).unsqueeze(1).expand(-1, hs.size(1), -1)
|
143 |
+
hs = self.hs_emb_projection(torch.cat([hs, speaker_embeddings_expanded], dim=-1))
|
144 |
+
return hs
|
IMSToucan/Layers/Convolution.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 Johns Hopkins University (Shinji Watanabe)
|
2 |
+
# Northwestern Polytechnical University (Pengcheng Guo)
|
3 |
+
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
4 |
+
# Adapted by Florian Lux 2021
|
5 |
+
|
6 |
+
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class ConvolutionModule(nn.Module):
|
11 |
+
"""
|
12 |
+
ConvolutionModule in Conformer model.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
channels (int): The number of channels of conv layers.
|
16 |
+
kernel_size (int): Kernel size of conv layers.
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
|
21 |
+
super(ConvolutionModule, self).__init__()
|
22 |
+
# kernel_size should be an odd number for 'SAME' padding
|
23 |
+
assert (kernel_size - 1) % 2 == 0
|
24 |
+
|
25 |
+
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, )
|
26 |
+
self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=bias, )
|
27 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=channels)
|
28 |
+
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=bias, )
|
29 |
+
self.activation = activation
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
"""
|
33 |
+
Compute convolution module.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
x (torch.Tensor): Input tensor (#batch, time, channels).
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
torch.Tensor: Output tensor (#batch, time, channels).
|
40 |
+
|
41 |
+
"""
|
42 |
+
# exchange the temporal dimension and the feature dimension
|
43 |
+
x = x.transpose(1, 2)
|
44 |
+
|
45 |
+
# GLU mechanism
|
46 |
+
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
47 |
+
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
48 |
+
|
49 |
+
# 1D Depthwise Conv
|
50 |
+
x = self.depthwise_conv(x)
|
51 |
+
x = self.activation(self.norm(x))
|
52 |
+
|
53 |
+
x = self.pointwise_conv2(x)
|
54 |
+
|
55 |
+
return x.transpose(1, 2)
|
IMSToucan/Layers/DurationPredictor.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 Tomoki Hayashi
|
2 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
3 |
+
# Adapted by Florian Lux 2021
|
4 |
+
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from .LayerNorm import LayerNorm
|
9 |
+
|
10 |
+
|
11 |
+
class DurationPredictor(torch.nn.Module):
|
12 |
+
"""
|
13 |
+
Duration predictor module.
|
14 |
+
|
15 |
+
This is a module of duration predictor described
|
16 |
+
in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
|
17 |
+
The duration predictor predicts a duration of each frame in log domain
|
18 |
+
from the hidden embeddings of encoder.
|
19 |
+
|
20 |
+
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
|
21 |
+
https://arxiv.org/pdf/1905.09263.pdf
|
22 |
+
|
23 |
+
Note:
|
24 |
+
The calculation domain of outputs is different
|
25 |
+
between in `forward` and in `inference`. In `forward`,
|
26 |
+
the outputs are calculated in log domain but in `inference`,
|
27 |
+
those are calculated in linear domain.
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0):
|
32 |
+
"""
|
33 |
+
Initialize duration predictor module.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
idim (int): Input dimension.
|
37 |
+
n_layers (int, optional): Number of convolutional layers.
|
38 |
+
n_chans (int, optional): Number of channels of convolutional layers.
|
39 |
+
kernel_size (int, optional): Kernel size of convolutional layers.
|
40 |
+
dropout_rate (float, optional): Dropout rate.
|
41 |
+
offset (float, optional): Offset value to avoid nan in log domain.
|
42 |
+
|
43 |
+
"""
|
44 |
+
super(DurationPredictor, self).__init__()
|
45 |
+
self.offset = offset
|
46 |
+
self.conv = torch.nn.ModuleList()
|
47 |
+
for idx in range(n_layers):
|
48 |
+
in_chans = idim if idx == 0 else n_chans
|
49 |
+
self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ), torch.nn.ReLU(),
|
50 |
+
LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate), )]
|
51 |
+
self.linear = torch.nn.Linear(n_chans, 1)
|
52 |
+
|
53 |
+
def _forward(self, xs, x_masks=None, is_inference=False):
|
54 |
+
xs = xs.transpose(1, -1) # (B, idim, Tmax)
|
55 |
+
for f in self.conv:
|
56 |
+
xs = f(xs) # (B, C, Tmax)
|
57 |
+
|
58 |
+
# NOTE: calculate in log domain
|
59 |
+
xs = self.linear(xs.transpose(1, -1)).squeeze(-1) # (B, Tmax)
|
60 |
+
|
61 |
+
if is_inference:
|
62 |
+
# NOTE: calculate in linear domain
|
63 |
+
xs = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value
|
64 |
+
|
65 |
+
if x_masks is not None:
|
66 |
+
xs = xs.masked_fill(x_masks, 0.0)
|
67 |
+
|
68 |
+
return xs
|
69 |
+
|
70 |
+
def forward(self, xs, x_masks=None):
|
71 |
+
"""
|
72 |
+
Calculate forward propagation.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
xs (Tensor): Batch of input sequences (B, Tmax, idim).
|
76 |
+
x_masks (ByteTensor, optional):
|
77 |
+
Batch of masks indicating padded part (B, Tmax).
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
Tensor: Batch of predicted durations in log domain (B, Tmax).
|
81 |
+
|
82 |
+
"""
|
83 |
+
return self._forward(xs, x_masks, False)
|
84 |
+
|
85 |
+
def inference(self, xs, x_masks=None):
|
86 |
+
"""
|
87 |
+
Inference duration.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
xs (Tensor): Batch of input sequences (B, Tmax, idim).
|
91 |
+
x_masks (ByteTensor, optional):
|
92 |
+
Batch of masks indicating padded part (B, Tmax).
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
LongTensor: Batch of predicted durations in linear domain (B, Tmax).
|
96 |
+
|
97 |
+
"""
|
98 |
+
return self._forward(xs, x_masks, True)
|
99 |
+
|
100 |
+
|
101 |
+
class DurationPredictorLoss(torch.nn.Module):
|
102 |
+
"""
|
103 |
+
Loss function module for duration predictor.
|
104 |
+
|
105 |
+
The loss value is Calculated in log domain to make it Gaussian.
|
106 |
+
|
107 |
+
"""
|
108 |
+
|
109 |
+
def __init__(self, offset=1.0, reduction="mean"):
|
110 |
+
"""
|
111 |
+
Args:
|
112 |
+
offset (float, optional): Offset value to avoid nan in log domain.
|
113 |
+
reduction (str): Reduction type in loss calculation.
|
114 |
+
|
115 |
+
"""
|
116 |
+
super(DurationPredictorLoss, self).__init__()
|
117 |
+
self.criterion = torch.nn.MSELoss(reduction=reduction)
|
118 |
+
self.offset = offset
|
119 |
+
|
120 |
+
def forward(self, outputs, targets):
|
121 |
+
"""
|
122 |
+
Calculate forward propagation.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
outputs (Tensor): Batch of prediction durations in log domain (B, T)
|
126 |
+
targets (LongTensor): Batch of groundtruth durations in linear domain (B, T)
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
Tensor: Mean squared error loss value.
|
130 |
+
|
131 |
+
Note:
|
132 |
+
`outputs` is in log domain but `targets` is in linear domain.
|
133 |
+
|
134 |
+
"""
|
135 |
+
# NOTE: outputs is in log domain while targets in linear
|
136 |
+
targets = torch.log(targets.float() + self.offset)
|
137 |
+
loss = self.criterion(outputs, targets)
|
138 |
+
|
139 |
+
return loss
|
IMSToucan/Layers/EncoderLayer.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 Johns Hopkins University (Shinji Watanabe)
|
2 |
+
# Northwestern Polytechnical University (Pengcheng Guo)
|
3 |
+
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
4 |
+
# Adapted by Florian Lux 2021
|
5 |
+
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from .LayerNorm import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class EncoderLayer(nn.Module):
|
14 |
+
"""
|
15 |
+
Encoder layer module.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
size (int): Input dimension.
|
19 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
20 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
|
21 |
+
can be used as the argument.
|
22 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
23 |
+
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
24 |
+
can be used as the argument.
|
25 |
+
feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance.
|
26 |
+
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
27 |
+
can be used as the argument.
|
28 |
+
conv_module (torch.nn.Module): Convolution module instance.
|
29 |
+
`ConvlutionModule` instance can be used as the argument.
|
30 |
+
dropout_rate (float): Dropout rate.
|
31 |
+
normalize_before (bool): Whether to use layer_norm before the first block.
|
32 |
+
concat_after (bool): Whether to concat attention layer's input and output.
|
33 |
+
if True, additional linear will be applied.
|
34 |
+
i.e. x -> x + linear(concat(x, att(x)))
|
35 |
+
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
36 |
+
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, size, self_attn, feed_forward, feed_forward_macaron, conv_module, dropout_rate, normalize_before=True, concat_after=False, ):
|
40 |
+
super(EncoderLayer, self).__init__()
|
41 |
+
self.self_attn = self_attn
|
42 |
+
self.feed_forward = feed_forward
|
43 |
+
self.feed_forward_macaron = feed_forward_macaron
|
44 |
+
self.conv_module = conv_module
|
45 |
+
self.norm_ff = LayerNorm(size) # for the FNN module
|
46 |
+
self.norm_mha = LayerNorm(size) # for the MHA module
|
47 |
+
if feed_forward_macaron is not None:
|
48 |
+
self.norm_ff_macaron = LayerNorm(size)
|
49 |
+
self.ff_scale = 0.5
|
50 |
+
else:
|
51 |
+
self.ff_scale = 1.0
|
52 |
+
if self.conv_module is not None:
|
53 |
+
self.norm_conv = LayerNorm(size) # for the CNN module
|
54 |
+
self.norm_final = LayerNorm(size) # for the final output of the block
|
55 |
+
self.dropout = nn.Dropout(dropout_rate)
|
56 |
+
self.size = size
|
57 |
+
self.normalize_before = normalize_before
|
58 |
+
self.concat_after = concat_after
|
59 |
+
if self.concat_after:
|
60 |
+
self.concat_linear = nn.Linear(size + size, size)
|
61 |
+
|
62 |
+
def forward(self, x_input, mask, cache=None):
|
63 |
+
"""
|
64 |
+
Compute encoded features.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
|
68 |
+
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
|
69 |
+
- w/o pos emb: Tensor (#batch, time, size).
|
70 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time).
|
71 |
+
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
75 |
+
torch.Tensor: Mask tensor (#batch, time).
|
76 |
+
|
77 |
+
"""
|
78 |
+
if isinstance(x_input, tuple):
|
79 |
+
x, pos_emb = x_input[0], x_input[1]
|
80 |
+
else:
|
81 |
+
x, pos_emb = x_input, None
|
82 |
+
|
83 |
+
# whether to use macaron style
|
84 |
+
if self.feed_forward_macaron is not None:
|
85 |
+
residual = x
|
86 |
+
if self.normalize_before:
|
87 |
+
x = self.norm_ff_macaron(x)
|
88 |
+
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
|
89 |
+
if not self.normalize_before:
|
90 |
+
x = self.norm_ff_macaron(x)
|
91 |
+
|
92 |
+
# multi-headed self-attention module
|
93 |
+
residual = x
|
94 |
+
if self.normalize_before:
|
95 |
+
x = self.norm_mha(x)
|
96 |
+
|
97 |
+
if cache is None:
|
98 |
+
x_q = x
|
99 |
+
else:
|
100 |
+
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
|
101 |
+
x_q = x[:, -1:, :]
|
102 |
+
residual = residual[:, -1:, :]
|
103 |
+
mask = None if mask is None else mask[:, -1:, :]
|
104 |
+
|
105 |
+
if pos_emb is not None:
|
106 |
+
x_att = self.self_attn(x_q, x, x, pos_emb, mask)
|
107 |
+
else:
|
108 |
+
x_att = self.self_attn(x_q, x, x, mask)
|
109 |
+
|
110 |
+
if self.concat_after:
|
111 |
+
x_concat = torch.cat((x, x_att), dim=-1)
|
112 |
+
x = residual + self.concat_linear(x_concat)
|
113 |
+
else:
|
114 |
+
x = residual + self.dropout(x_att)
|
115 |
+
if not self.normalize_before:
|
116 |
+
x = self.norm_mha(x)
|
117 |
+
|
118 |
+
# convolution module
|
119 |
+
if self.conv_module is not None:
|
120 |
+
residual = x
|
121 |
+
if self.normalize_before:
|
122 |
+
x = self.norm_conv(x)
|
123 |
+
x = residual + self.dropout(self.conv_module(x))
|
124 |
+
if not self.normalize_before:
|
125 |
+
x = self.norm_conv(x)
|
126 |
+
|
127 |
+
# feed forward module
|
128 |
+
residual = x
|
129 |
+
if self.normalize_before:
|
130 |
+
x = self.norm_ff(x)
|
131 |
+
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
132 |
+
if not self.normalize_before:
|
133 |
+
x = self.norm_ff(x)
|
134 |
+
|
135 |
+
if self.conv_module is not None:
|
136 |
+
x = self.norm_final(x)
|
137 |
+
|
138 |
+
if cache is not None:
|
139 |
+
x = torch.cat([cache, x], dim=1)
|
140 |
+
|
141 |
+
if pos_emb is not None:
|
142 |
+
return (x, pos_emb), mask
|
143 |
+
|
144 |
+
return x, mask
|
IMSToucan/Layers/LayerNorm.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Written by Shigeki Karita, 2019
|
2 |
+
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
3 |
+
# Adapted by Florian Lux, 2021
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class LayerNorm(torch.nn.LayerNorm):
|
9 |
+
"""
|
10 |
+
Layer normalization module.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
nout (int): Output dim size.
|
14 |
+
dim (int): Dimension to be normalized.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, nout, dim=-1):
|
18 |
+
"""
|
19 |
+
Construct an LayerNorm object.
|
20 |
+
"""
|
21 |
+
super(LayerNorm, self).__init__(nout, eps=1e-12)
|
22 |
+
self.dim = dim
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
"""
|
26 |
+
Apply layer normalization.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
x (torch.Tensor): Input tensor.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
torch.Tensor: Normalized tensor.
|
33 |
+
"""
|
34 |
+
if self.dim == -1:
|
35 |
+
return super(LayerNorm, self).forward(x)
|
36 |
+
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)
|
IMSToucan/Layers/LengthRegulator.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 Tomoki Hayashi
|
2 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
3 |
+
# Adapted by Florian Lux 2021
|
4 |
+
|
5 |
+
from abc import ABC
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from ..Utility.utils import pad_list
|
10 |
+
|
11 |
+
|
12 |
+
class LengthRegulator(torch.nn.Module, ABC):
|
13 |
+
"""
|
14 |
+
Length regulator module for feed-forward Transformer.
|
15 |
+
|
16 |
+
This is a module of length regulator described in
|
17 |
+
`FastSpeech: Fast, Robust and Controllable Text to Speech`_.
|
18 |
+
The length regulator expands char or
|
19 |
+
phoneme-level embedding features to frame-level by repeating each
|
20 |
+
feature based on the corresponding predicted durations.
|
21 |
+
|
22 |
+
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
|
23 |
+
https://arxiv.org/pdf/1905.09263.pdf
|
24 |
+
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, pad_value=0.0):
|
28 |
+
"""
|
29 |
+
Initialize length regulator module.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
pad_value (float, optional): Value used for padding.
|
33 |
+
"""
|
34 |
+
super(LengthRegulator, self).__init__()
|
35 |
+
self.pad_value = pad_value
|
36 |
+
|
37 |
+
def forward(self, xs, ds, alpha=1.0):
|
38 |
+
"""
|
39 |
+
Calculate forward propagation.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
xs (Tensor): Batch of sequences of char or phoneme embeddings (B, Tmax, D).
|
43 |
+
ds (LongTensor): Batch of durations of each frame (B, T).
|
44 |
+
alpha (float, optional): Alpha value to control speed of speech.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
Tensor: replicated input tensor based on durations (B, T*, D).
|
48 |
+
"""
|
49 |
+
if alpha != 1.0:
|
50 |
+
assert alpha > 0
|
51 |
+
ds = torch.round(ds.float() * alpha).long()
|
52 |
+
|
53 |
+
if ds.sum() == 0:
|
54 |
+
ds[ds.sum(dim=1).eq(0)] = 1
|
55 |
+
|
56 |
+
return pad_list([self._repeat_one_sequence(x, d) for x, d in zip(xs, ds)], self.pad_value)
|
57 |
+
|
58 |
+
def _repeat_one_sequence(self, x, d):
|
59 |
+
"""
|
60 |
+
Repeat each frame according to duration
|
61 |
+
"""
|
62 |
+
return torch.repeat_interleave(x, d, dim=0)
|
IMSToucan/Layers/MultiLayeredConv1d.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 Tomoki Hayashi
|
2 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
3 |
+
# Adapted by Florian Lux 2021
|
4 |
+
|
5 |
+
"""
|
6 |
+
Layer modules for FFT block in FastSpeech (Feed-forward Transformer).
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
class MultiLayeredConv1d(torch.nn.Module):
|
13 |
+
"""
|
14 |
+
Multi-layered conv1d for Transformer block.
|
15 |
+
|
16 |
+
This is a module of multi-layered conv1d designed
|
17 |
+
to replace positionwise feed-forward network
|
18 |
+
in Transformer block, which is introduced in
|
19 |
+
`FastSpeech: Fast, Robust and Controllable Text to Speech`_.
|
20 |
+
|
21 |
+
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
|
22 |
+
https://arxiv.org/pdf/1905.09263.pdf
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
|
26 |
+
"""
|
27 |
+
Initialize MultiLayeredConv1d module.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
in_chans (int): Number of input channels.
|
31 |
+
hidden_chans (int): Number of hidden channels.
|
32 |
+
kernel_size (int): Kernel size of conv1d.
|
33 |
+
dropout_rate (float): Dropout rate.
|
34 |
+
"""
|
35 |
+
super(MultiLayeredConv1d, self).__init__()
|
36 |
+
self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, )
|
37 |
+
self.w_2 = torch.nn.Conv1d(hidden_chans, in_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, )
|
38 |
+
self.dropout = torch.nn.Dropout(dropout_rate)
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
"""
|
42 |
+
Calculate forward propagation.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
x (torch.Tensor): Batch of input tensors (B, T, in_chans).
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
torch.Tensor: Batch of output tensors (B, T, hidden_chans).
|
49 |
+
"""
|
50 |
+
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
|
51 |
+
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
|
52 |
+
|
53 |
+
|
54 |
+
class Conv1dLinear(torch.nn.Module):
|
55 |
+
"""
|
56 |
+
Conv1D + Linear for Transformer block.
|
57 |
+
|
58 |
+
A variant of MultiLayeredConv1d, which replaces second conv-layer to linear.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
|
62 |
+
"""
|
63 |
+
Initialize Conv1dLinear module.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
in_chans (int): Number of input channels.
|
67 |
+
hidden_chans (int): Number of hidden channels.
|
68 |
+
kernel_size (int): Kernel size of conv1d.
|
69 |
+
dropout_rate (float): Dropout rate.
|
70 |
+
"""
|
71 |
+
super(Conv1dLinear, self).__init__()
|
72 |
+
self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, )
|
73 |
+
self.w_2 = torch.nn.Linear(hidden_chans, in_chans)
|
74 |
+
self.dropout = torch.nn.Dropout(dropout_rate)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
"""
|
78 |
+
Calculate forward propagation.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
x (torch.Tensor): Batch of input tensors (B, T, in_chans).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Batch of output tensors (B, T, hidden_chans).
|
85 |
+
"""
|
86 |
+
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
|
87 |
+
return self.w_2(self.dropout(x))
|
IMSToucan/Layers/MultiSequential.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Written by Shigeki Karita, 2019
|
2 |
+
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
3 |
+
# Adapted by Florian Lux, 2021
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class MultiSequential(torch.nn.Sequential):
|
9 |
+
"""
|
10 |
+
Multi-input multi-output torch.nn.Sequential.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def forward(self, *args):
|
14 |
+
"""
|
15 |
+
Repeat.
|
16 |
+
"""
|
17 |
+
for m in self:
|
18 |
+
args = m(*args)
|
19 |
+
return args
|
20 |
+
|
21 |
+
|
22 |
+
def repeat(N, fn):
|
23 |
+
"""
|
24 |
+
Repeat module N times.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
N (int): Number of repeat time.
|
28 |
+
fn (Callable): Function to generate module.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
MultiSequential: Repeated model instance.
|
32 |
+
"""
|
33 |
+
return MultiSequential(*[fn(n) for n in range(N)])
|
IMSToucan/Layers/PositionalEncoding.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Taken from ESPNet
|
3 |
+
"""
|
4 |
+
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
class PositionalEncoding(torch.nn.Module):
|
11 |
+
"""
|
12 |
+
Positional encoding.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
d_model (int): Embedding dimension.
|
16 |
+
dropout_rate (float): Dropout rate.
|
17 |
+
max_len (int): Maximum input length.
|
18 |
+
reverse (bool): Whether to reverse the input position.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
|
22 |
+
"""
|
23 |
+
Construct an PositionalEncoding object.
|
24 |
+
"""
|
25 |
+
super(PositionalEncoding, self).__init__()
|
26 |
+
self.d_model = d_model
|
27 |
+
self.reverse = reverse
|
28 |
+
self.xscale = math.sqrt(self.d_model)
|
29 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
30 |
+
self.pe = None
|
31 |
+
self.extend_pe(torch.tensor(0.0, device=d_model.device).expand(1, max_len))
|
32 |
+
|
33 |
+
def extend_pe(self, x):
|
34 |
+
"""
|
35 |
+
Reset the positional encodings.
|
36 |
+
"""
|
37 |
+
if self.pe is not None:
|
38 |
+
if self.pe.size(1) >= x.size(1):
|
39 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
40 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
41 |
+
return
|
42 |
+
pe = torch.zeros(x.size(1), self.d_model)
|
43 |
+
if self.reverse:
|
44 |
+
position = torch.arange(x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
|
45 |
+
else:
|
46 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
47 |
+
div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model))
|
48 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
49 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
50 |
+
pe = pe.unsqueeze(0)
|
51 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
"""
|
55 |
+
Add positional encoding.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
62 |
+
"""
|
63 |
+
self.extend_pe(x)
|
64 |
+
x = x * self.xscale + self.pe[:, : x.size(1)]
|
65 |
+
return self.dropout(x)
|
66 |
+
|
67 |
+
|
68 |
+
class RelPositionalEncoding(torch.nn.Module):
|
69 |
+
"""
|
70 |
+
Relative positional encoding module (new implementation).
|
71 |
+
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
72 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
73 |
+
Args:
|
74 |
+
d_model (int): Embedding dimension.
|
75 |
+
dropout_rate (float): Dropout rate.
|
76 |
+
max_len (int): Maximum input length.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
80 |
+
"""
|
81 |
+
Construct an PositionalEncoding object.
|
82 |
+
"""
|
83 |
+
super(RelPositionalEncoding, self).__init__()
|
84 |
+
self.d_model = d_model
|
85 |
+
self.xscale = math.sqrt(self.d_model)
|
86 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
87 |
+
self.pe = None
|
88 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
89 |
+
|
90 |
+
def extend_pe(self, x):
|
91 |
+
"""Reset the positional encodings."""
|
92 |
+
if self.pe is not None:
|
93 |
+
# self.pe contains both positive and negative parts
|
94 |
+
# the length of self.pe is 2 * input_len - 1
|
95 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
96 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
97 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
98 |
+
return
|
99 |
+
# Suppose `i` means to the position of query vecotr and `j` means the
|
100 |
+
# position of key vector. We use position relative positions when keys
|
101 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
102 |
+
pe_positive = torch.zeros(x.size(1), self.d_model, device=x.device)
|
103 |
+
pe_negative = torch.zeros(x.size(1), self.d_model, device=x.device)
|
104 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32, device=x.device).unsqueeze(1)
|
105 |
+
div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32, device=x.device) * -(math.log(10000.0) / self.d_model))
|
106 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
107 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
108 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
109 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
110 |
+
|
111 |
+
# Reserve the order of positive indices and concat both positive and
|
112 |
+
# negative indices. This is used to support the shifting trick
|
113 |
+
# as in https://arxiv.org/abs/1901.02860
|
114 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
115 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
116 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
117 |
+
self.pe = pe.to(dtype=x.dtype)
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
"""
|
121 |
+
Add positional encoding.
|
122 |
+
Args:
|
123 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
124 |
+
Returns:
|
125 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
126 |
+
"""
|
127 |
+
self.extend_pe(x)
|
128 |
+
x = x * self.xscale
|
129 |
+
pos_emb = self.pe[:, self.pe.size(1) // 2 - x.size(1) + 1: self.pe.size(1) // 2 + x.size(1), ]
|
130 |
+
return self.dropout(x), self.dropout(pos_emb)
|
131 |
+
|
132 |
+
|
133 |
+
class ScaledPositionalEncoding(PositionalEncoding):
|
134 |
+
"""
|
135 |
+
Scaled positional encoding module.
|
136 |
+
|
137 |
+
See Sec. 3.2 https://arxiv.org/abs/1809.08895
|
138 |
+
|
139 |
+
Args:
|
140 |
+
d_model (int): Embedding dimension.
|
141 |
+
dropout_rate (float): Dropout rate.
|
142 |
+
max_len (int): Maximum input length.
|
143 |
+
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
147 |
+
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len)
|
148 |
+
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
|
149 |
+
|
150 |
+
def reset_parameters(self):
|
151 |
+
self.alpha.data = torch.tensor(1.0)
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
"""
|
155 |
+
Add positional encoding.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
162 |
+
|
163 |
+
"""
|
164 |
+
self.extend_pe(x)
|
165 |
+
x = x + self.alpha * self.pe[:, : x.size(1)]
|
166 |
+
return self.dropout(x)
|
IMSToucan/Layers/PositionwiseFeedForward.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Written by Shigeki Karita, 2019
|
2 |
+
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
3 |
+
# Adapted by Florian Lux, 2021
|
4 |
+
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
class PositionwiseFeedForward(torch.nn.Module):
|
10 |
+
"""
|
11 |
+
Args:
|
12 |
+
idim (int): Input dimenstion.
|
13 |
+
hidden_units (int): The number of hidden units.
|
14 |
+
dropout_rate (float): Dropout rate.
|
15 |
+
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, idim, hidden_units, dropout_rate, activation=torch.nn.ReLU()):
|
19 |
+
super(PositionwiseFeedForward, self).__init__()
|
20 |
+
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
21 |
+
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
22 |
+
self.dropout = torch.nn.Dropout(dropout_rate)
|
23 |
+
self.activation = activation
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
return self.w_2(self.dropout(self.activation(self.w_1(x))))
|
IMSToucan/Layers/PostNet.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Taken from ESPNet
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class PostNet(torch.nn.Module):
|
9 |
+
"""
|
10 |
+
From Tacotron2
|
11 |
+
|
12 |
+
Postnet module for Spectrogram prediction network.
|
13 |
+
|
14 |
+
This is a module of Postnet in Spectrogram prediction network,
|
15 |
+
which described in `Natural TTS Synthesis by
|
16 |
+
Conditioning WaveNet on Mel Spectrogram Predictions`_.
|
17 |
+
The Postnet refines the predicted
|
18 |
+
Mel-filterbank of the decoder,
|
19 |
+
which helps to compensate the detail sturcture of spectrogram.
|
20 |
+
|
21 |
+
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
|
22 |
+
https://arxiv.org/abs/1712.05884
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, idim, odim, n_layers=5, n_chans=512, n_filts=5, dropout_rate=0.5, use_batch_norm=True):
|
26 |
+
"""
|
27 |
+
Initialize postnet module.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
idim (int): Dimension of the inputs.
|
31 |
+
odim (int): Dimension of the outputs.
|
32 |
+
n_layers (int, optional): The number of layers.
|
33 |
+
n_filts (int, optional): The number of filter size.
|
34 |
+
n_units (int, optional): The number of filter channels.
|
35 |
+
use_batch_norm (bool, optional): Whether to use batch normalization..
|
36 |
+
dropout_rate (float, optional): Dropout rate..
|
37 |
+
"""
|
38 |
+
super(PostNet, self).__init__()
|
39 |
+
self.postnet = torch.nn.ModuleList()
|
40 |
+
for layer in range(n_layers - 1):
|
41 |
+
ichans = odim if layer == 0 else n_chans
|
42 |
+
ochans = odim if layer == n_layers - 1 else n_chans
|
43 |
+
if use_batch_norm:
|
44 |
+
self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
|
45 |
+
torch.nn.GroupNorm(num_groups=32, num_channels=ochans), torch.nn.Tanh(),
|
46 |
+
torch.nn.Dropout(dropout_rate), )]
|
47 |
+
|
48 |
+
else:
|
49 |
+
self.postnet += [
|
50 |
+
torch.nn.Sequential(torch.nn.Conv1d(ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ), torch.nn.Tanh(),
|
51 |
+
torch.nn.Dropout(dropout_rate), )]
|
52 |
+
ichans = n_chans if n_layers != 1 else odim
|
53 |
+
if use_batch_norm:
|
54 |
+
self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
|
55 |
+
torch.nn.GroupNorm(num_groups=20, num_channels=odim),
|
56 |
+
torch.nn.Dropout(dropout_rate), )]
|
57 |
+
|
58 |
+
else:
|
59 |
+
self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
|
60 |
+
torch.nn.Dropout(dropout_rate), )]
|
61 |
+
|
62 |
+
def forward(self, xs):
|
63 |
+
"""
|
64 |
+
Calculate forward propagation.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
xs (Tensor): Batch of the sequences of padded input tensors (B, idim, Tmax).
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
Tensor: Batch of padded output tensor. (B, odim, Tmax).
|
71 |
+
"""
|
72 |
+
for i in range(len(self.postnet)):
|
73 |
+
xs = self.postnet[i](xs)
|
74 |
+
return xs
|
IMSToucan/Layers/RNNAttention.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
2 |
+
# Adapted by Florian Lux, 2021
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from ..Utility.utils import make_pad_mask
|
8 |
+
from ..Utility.utils import to_device
|
9 |
+
|
10 |
+
|
11 |
+
def _apply_attention_constraint(e, last_attended_idx, backward_window=1, forward_window=3):
|
12 |
+
"""
|
13 |
+
Apply monotonic attention constraint.
|
14 |
+
|
15 |
+
This function apply the monotonic attention constraint
|
16 |
+
introduced in `Deep Voice 3: Scaling
|
17 |
+
Text-to-Speech with Convolutional Sequence Learning`_.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
e (Tensor): Attention energy before applying softmax (1, T).
|
21 |
+
last_attended_idx (int): The index of the inputs of the last attended [0, T].
|
22 |
+
backward_window (int, optional): Backward window size in attention constraint.
|
23 |
+
forward_window (int, optional): Forward window size in attetion constraint.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
Tensor: Monotonic constrained attention energy (1, T).
|
27 |
+
|
28 |
+
.. _`Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning`:
|
29 |
+
https://arxiv.org/abs/1710.07654
|
30 |
+
"""
|
31 |
+
if e.size(0) != 1:
|
32 |
+
raise NotImplementedError("Batch attention constraining is not yet supported.")
|
33 |
+
backward_idx = last_attended_idx - backward_window
|
34 |
+
forward_idx = last_attended_idx + forward_window
|
35 |
+
if backward_idx > 0:
|
36 |
+
e[:, :backward_idx] = -float("inf")
|
37 |
+
if forward_idx < e.size(1):
|
38 |
+
e[:, forward_idx:] = -float("inf")
|
39 |
+
return e
|
40 |
+
|
41 |
+
|
42 |
+
class AttLoc(torch.nn.Module):
|
43 |
+
"""
|
44 |
+
location-aware attention module.
|
45 |
+
|
46 |
+
Reference: Attention-Based Models for Speech Recognition
|
47 |
+
(https://arxiv.org/pdf/1506.07503.pdf)
|
48 |
+
|
49 |
+
:param int eprojs: # projection-units of encoder
|
50 |
+
:param int dunits: # units of decoder
|
51 |
+
:param int att_dim: attention dimension
|
52 |
+
:param int aconv_chans: # channels of attention convolution
|
53 |
+
:param int aconv_filts: filter size of attention convolution
|
54 |
+
:param bool han_mode: flag to switch on mode of hierarchical attention
|
55 |
+
and not store pre_compute_enc_h
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False):
|
59 |
+
super(AttLoc, self).__init__()
|
60 |
+
self.mlp_enc = torch.nn.Linear(eprojs, att_dim)
|
61 |
+
self.mlp_dec = torch.nn.Linear(dunits, att_dim, bias=False)
|
62 |
+
self.mlp_att = torch.nn.Linear(aconv_chans, att_dim, bias=False)
|
63 |
+
self.loc_conv = torch.nn.Conv2d(1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias=False, )
|
64 |
+
self.gvec = torch.nn.Linear(att_dim, 1)
|
65 |
+
|
66 |
+
self.dunits = dunits
|
67 |
+
self.eprojs = eprojs
|
68 |
+
self.att_dim = att_dim
|
69 |
+
self.h_length = None
|
70 |
+
self.enc_h = None
|
71 |
+
self.pre_compute_enc_h = None
|
72 |
+
self.mask = None
|
73 |
+
self.han_mode = han_mode
|
74 |
+
|
75 |
+
def reset(self):
|
76 |
+
"""reset states"""
|
77 |
+
self.h_length = None
|
78 |
+
self.enc_h = None
|
79 |
+
self.pre_compute_enc_h = None
|
80 |
+
self.mask = None
|
81 |
+
|
82 |
+
def forward(self,
|
83 |
+
enc_hs_pad,
|
84 |
+
enc_hs_len,
|
85 |
+
dec_z,
|
86 |
+
att_prev,
|
87 |
+
scaling=2.0,
|
88 |
+
last_attended_idx=None,
|
89 |
+
backward_window=1,
|
90 |
+
forward_window=3):
|
91 |
+
"""
|
92 |
+
Calculate AttLoc forward propagation.
|
93 |
+
|
94 |
+
:param torch.Tensor enc_hs_pad: padded encoder hidden state (B x T_max x D_enc)
|
95 |
+
:param list enc_hs_len: padded encoder hidden state length (B)
|
96 |
+
:param torch.Tensor dec_z: decoder hidden state (B x D_dec)
|
97 |
+
:param torch.Tensor att_prev: previous attention weight (B x T_max)
|
98 |
+
:param float scaling: scaling parameter before applying softmax
|
99 |
+
:param torch.Tensor forward_window:
|
100 |
+
forward window size when constraining attention
|
101 |
+
:param int last_attended_idx: index of the inputs of the last attended
|
102 |
+
:param int backward_window: backward window size in attention constraint
|
103 |
+
:param int forward_window: forward window size in attention constraint
|
104 |
+
:return: attention weighted encoder state (B, D_enc)
|
105 |
+
:rtype: torch.Tensor
|
106 |
+
:return: previous attention weights (B x T_max)
|
107 |
+
:rtype: torch.Tensor
|
108 |
+
"""
|
109 |
+
batch = len(enc_hs_pad)
|
110 |
+
# pre-compute all h outside the decoder loop
|
111 |
+
if self.pre_compute_enc_h is None or self.han_mode:
|
112 |
+
self.enc_h = enc_hs_pad # utt x frame x hdim
|
113 |
+
self.h_length = self.enc_h.size(1)
|
114 |
+
# utt x frame x att_dim
|
115 |
+
self.pre_compute_enc_h = self.mlp_enc(self.enc_h)
|
116 |
+
if dec_z is None:
|
117 |
+
dec_z = enc_hs_pad.new_zeros(batch, self.dunits)
|
118 |
+
else:
|
119 |
+
dec_z = dec_z.view(batch, self.dunits)
|
120 |
+
|
121 |
+
# initialize attention weight with uniform dist.
|
122 |
+
if att_prev is None:
|
123 |
+
# if no bias, 0 0-pad goes 0
|
124 |
+
att_prev = 1.0 - make_pad_mask(enc_hs_len, device=dec_z.device).to(dtype=dec_z.dtype)
|
125 |
+
att_prev = att_prev / att_prev.new(enc_hs_len).unsqueeze(-1)
|
126 |
+
|
127 |
+
# att_prev: utt x frame -> utt x 1 x 1 x frame
|
128 |
+
# -> utt x att_conv_chans x 1 x frame
|
129 |
+
att_conv = self.loc_conv(att_prev.view(batch, 1, 1, self.h_length))
|
130 |
+
# att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans
|
131 |
+
att_conv = att_conv.squeeze(2).transpose(1, 2)
|
132 |
+
# att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim
|
133 |
+
att_conv = self.mlp_att(att_conv)
|
134 |
+
|
135 |
+
# dec_z_tiled: utt x frame x att_dim
|
136 |
+
dec_z_tiled = self.mlp_dec(dec_z).view(batch, 1, self.att_dim)
|
137 |
+
|
138 |
+
# dot with gvec
|
139 |
+
# utt x frame x att_dim -> utt x frame
|
140 |
+
e = self.gvec(torch.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2)
|
141 |
+
|
142 |
+
# NOTE: consider zero padding when compute w.
|
143 |
+
if self.mask is None:
|
144 |
+
self.mask = to_device(enc_hs_pad, make_pad_mask(enc_hs_len))
|
145 |
+
e.masked_fill_(self.mask, -float("inf"))
|
146 |
+
|
147 |
+
# apply monotonic attention constraint (mainly for TTS)
|
148 |
+
if last_attended_idx is not None:
|
149 |
+
e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window)
|
150 |
+
|
151 |
+
w = F.softmax(scaling * e, dim=1)
|
152 |
+
|
153 |
+
# weighted sum over flames
|
154 |
+
# utt x hdim
|
155 |
+
c = torch.sum(self.enc_h * w.view(batch, self.h_length, 1), dim=1)
|
156 |
+
|
157 |
+
return c, w
|
158 |
+
|
159 |
+
|
160 |
+
class AttForwardTA(torch.nn.Module):
|
161 |
+
"""Forward attention with transition agent module.
|
162 |
+
Reference:
|
163 |
+
Forward attention in sequence-to-sequence acoustic modeling for speech synthesis
|
164 |
+
(https://arxiv.org/pdf/1807.06736.pdf)
|
165 |
+
:param int eunits: # units of encoder
|
166 |
+
:param int dunits: # units of decoder
|
167 |
+
:param int att_dim: attention dimension
|
168 |
+
:param int aconv_chans: # channels of attention convolution
|
169 |
+
:param int aconv_filts: filter size of attention convolution
|
170 |
+
:param int odim: output dimension
|
171 |
+
"""
|
172 |
+
|
173 |
+
def __init__(self, eunits, dunits, att_dim, aconv_chans, aconv_filts, odim):
|
174 |
+
super(AttForwardTA, self).__init__()
|
175 |
+
self.mlp_enc = torch.nn.Linear(eunits, att_dim)
|
176 |
+
self.mlp_dec = torch.nn.Linear(dunits, att_dim, bias=False)
|
177 |
+
self.mlp_ta = torch.nn.Linear(eunits + dunits + odim, 1)
|
178 |
+
self.mlp_att = torch.nn.Linear(aconv_chans, att_dim, bias=False)
|
179 |
+
self.loc_conv = torch.nn.Conv2d(1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias=False, )
|
180 |
+
self.gvec = torch.nn.Linear(att_dim, 1)
|
181 |
+
self.dunits = dunits
|
182 |
+
self.eunits = eunits
|
183 |
+
self.att_dim = att_dim
|
184 |
+
self.h_length = None
|
185 |
+
self.enc_h = None
|
186 |
+
self.pre_compute_enc_h = None
|
187 |
+
self.mask = None
|
188 |
+
self.trans_agent_prob = 0.5
|
189 |
+
|
190 |
+
def reset(self):
|
191 |
+
self.h_length = None
|
192 |
+
self.enc_h = None
|
193 |
+
self.pre_compute_enc_h = None
|
194 |
+
self.mask = None
|
195 |
+
self.trans_agent_prob = 0.5
|
196 |
+
|
197 |
+
def forward(self,
|
198 |
+
enc_hs_pad,
|
199 |
+
enc_hs_len,
|
200 |
+
dec_z,
|
201 |
+
att_prev,
|
202 |
+
out_prev,
|
203 |
+
scaling=1.0,
|
204 |
+
last_attended_idx=None,
|
205 |
+
backward_window=1,
|
206 |
+
forward_window=3):
|
207 |
+
"""
|
208 |
+
Calculate AttForwardTA forward propagation.
|
209 |
+
|
210 |
+
:param torch.Tensor enc_hs_pad: padded encoder hidden state (B, Tmax, eunits)
|
211 |
+
:param list enc_hs_len: padded encoder hidden state length (B)
|
212 |
+
:param torch.Tensor dec_z: decoder hidden state (B, dunits)
|
213 |
+
:param torch.Tensor att_prev: attention weights of previous step
|
214 |
+
:param torch.Tensor out_prev: decoder outputs of previous step (B, odim)
|
215 |
+
:param float scaling: scaling parameter before applying softmax
|
216 |
+
:param int last_attended_idx: index of the inputs of the last attended
|
217 |
+
:param int backward_window: backward window size in attention constraint
|
218 |
+
:param int forward_window: forward window size in attetion constraint
|
219 |
+
:return: attention weighted encoder state (B, dunits)
|
220 |
+
:rtype: torch.Tensor
|
221 |
+
:return: previous attention weights (B, Tmax)
|
222 |
+
:rtype: torch.Tensor
|
223 |
+
"""
|
224 |
+
batch = len(enc_hs_pad)
|
225 |
+
# pre-compute all h outside the decoder loop
|
226 |
+
if self.pre_compute_enc_h is None:
|
227 |
+
self.enc_h = enc_hs_pad # utt x frame x hdim
|
228 |
+
self.h_length = self.enc_h.size(1)
|
229 |
+
# utt x frame x att_dim
|
230 |
+
self.pre_compute_enc_h = self.mlp_enc(self.enc_h)
|
231 |
+
|
232 |
+
if dec_z is None:
|
233 |
+
dec_z = enc_hs_pad.new_zeros(batch, self.dunits)
|
234 |
+
else:
|
235 |
+
dec_z = dec_z.view(batch, self.dunits)
|
236 |
+
|
237 |
+
if att_prev is None:
|
238 |
+
# initial attention will be [1, 0, 0, ...]
|
239 |
+
att_prev = enc_hs_pad.new_zeros(*enc_hs_pad.size()[:2])
|
240 |
+
att_prev[:, 0] = 1.0
|
241 |
+
|
242 |
+
# att_prev: utt x frame -> utt x 1 x 1 x frame
|
243 |
+
# -> utt x att_conv_chans x 1 x frame
|
244 |
+
att_conv = self.loc_conv(att_prev.view(batch, 1, 1, self.h_length))
|
245 |
+
# att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans
|
246 |
+
att_conv = att_conv.squeeze(2).transpose(1, 2)
|
247 |
+
# att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim
|
248 |
+
att_conv = self.mlp_att(att_conv)
|
249 |
+
|
250 |
+
# dec_z_tiled: utt x frame x att_dim
|
251 |
+
dec_z_tiled = self.mlp_dec(dec_z).view(batch, 1, self.att_dim)
|
252 |
+
|
253 |
+
# dot with gvec
|
254 |
+
# utt x frame x att_dim -> utt x frame
|
255 |
+
e = self.gvec(torch.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2)
|
256 |
+
|
257 |
+
# NOTE consider zero padding when compute w.
|
258 |
+
if self.mask is None:
|
259 |
+
self.mask = to_device(enc_hs_pad, make_pad_mask(enc_hs_len))
|
260 |
+
e.masked_fill_(self.mask, -float("inf"))
|
261 |
+
|
262 |
+
# apply monotonic attention constraint (mainly for TTS)
|
263 |
+
if last_attended_idx is not None:
|
264 |
+
e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window)
|
265 |
+
|
266 |
+
w = F.softmax(scaling * e, dim=1)
|
267 |
+
|
268 |
+
# forward attention
|
269 |
+
att_prev_shift = F.pad(att_prev, (1, 0))[:, :-1]
|
270 |
+
w = (self.trans_agent_prob * att_prev + (1 - self.trans_agent_prob) * att_prev_shift) * w
|
271 |
+
# NOTE: clamp is needed to avoid nan gradient
|
272 |
+
w = F.normalize(torch.clamp(w, 1e-6), p=1, dim=1)
|
273 |
+
|
274 |
+
# weighted sum over flames
|
275 |
+
# utt x hdim
|
276 |
+
# NOTE use bmm instead of sum(*)
|
277 |
+
c = torch.sum(self.enc_h * w.view(batch, self.h_length, 1), dim=1)
|
278 |
+
|
279 |
+
# update transition agent prob
|
280 |
+
self.trans_agent_prob = torch.sigmoid(self.mlp_ta(torch.cat([c, out_prev, dec_z], dim=1)))
|
281 |
+
|
282 |
+
return c, w
|
IMSToucan/Layers/ResidualBlock.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
"""
|
4 |
+
References:
|
5 |
+
- https://github.com/jik876/hifi-gan
|
6 |
+
- https://github.com/kan-bayashi/ParallelWaveGAN
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
class Conv1d(torch.nn.Conv1d):
|
13 |
+
"""
|
14 |
+
Conv1d module with customized initialization.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, *args, **kwargs):
|
18 |
+
super(Conv1d, self).__init__(*args, **kwargs)
|
19 |
+
|
20 |
+
def reset_parameters(self):
|
21 |
+
torch.nn.init.kaiming_normal_(self.weight, nonlinearity="relu")
|
22 |
+
if self.bias is not None:
|
23 |
+
torch.nn.init.constant_(self.bias, 0.0)
|
24 |
+
|
25 |
+
|
26 |
+
class Conv1d1x1(Conv1d):
|
27 |
+
"""
|
28 |
+
1x1 Conv1d with customized initialization.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, in_channels, out_channels, bias):
|
32 |
+
super(Conv1d1x1, self).__init__(in_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=bias)
|
33 |
+
|
34 |
+
|
35 |
+
class HiFiGANResidualBlock(torch.nn.Module):
|
36 |
+
"""Residual block module in HiFiGAN."""
|
37 |
+
|
38 |
+
def __init__(self,
|
39 |
+
kernel_size=3,
|
40 |
+
channels=512,
|
41 |
+
dilations=(1, 3, 5),
|
42 |
+
bias=True,
|
43 |
+
use_additional_convs=True,
|
44 |
+
nonlinear_activation="LeakyReLU",
|
45 |
+
nonlinear_activation_params={"negative_slope": 0.1}, ):
|
46 |
+
"""
|
47 |
+
Initialize HiFiGANResidualBlock module.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
kernel_size (int): Kernel size of dilation convolution layer.
|
51 |
+
channels (int): Number of channels for convolution layer.
|
52 |
+
dilations (List[int]): List of dilation factors.
|
53 |
+
use_additional_convs (bool): Whether to use additional convolution layers.
|
54 |
+
bias (bool): Whether to add bias parameter in convolution layers.
|
55 |
+
nonlinear_activation (str): Activation function module name.
|
56 |
+
nonlinear_activation_params (dict): Hyperparameters for activation function.
|
57 |
+
"""
|
58 |
+
super().__init__()
|
59 |
+
self.use_additional_convs = use_additional_convs
|
60 |
+
self.convs1 = torch.nn.ModuleList()
|
61 |
+
if use_additional_convs:
|
62 |
+
self.convs2 = torch.nn.ModuleList()
|
63 |
+
assert kernel_size % 2 == 1, "Kernel size must be odd number."
|
64 |
+
for dilation in dilations:
|
65 |
+
self.convs1 += [torch.nn.Sequential(getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
|
66 |
+
torch.nn.Conv1d(channels,
|
67 |
+
channels,
|
68 |
+
kernel_size,
|
69 |
+
1,
|
70 |
+
dilation=dilation,
|
71 |
+
bias=bias,
|
72 |
+
padding=(kernel_size - 1) // 2 * dilation, ), )]
|
73 |
+
if use_additional_convs:
|
74 |
+
self.convs2 += [torch.nn.Sequential(getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
|
75 |
+
torch.nn.Conv1d(channels,
|
76 |
+
channels,
|
77 |
+
kernel_size,
|
78 |
+
1,
|
79 |
+
dilation=1,
|
80 |
+
bias=bias,
|
81 |
+
padding=(kernel_size - 1) // 2, ), )]
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
"""
|
85 |
+
Calculate forward propagation.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
x (Tensor): Input tensor (B, channels, T).
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
Tensor: Output tensor (B, channels, T).
|
92 |
+
"""
|
93 |
+
for idx in range(len(self.convs1)):
|
94 |
+
xt = self.convs1[idx](x)
|
95 |
+
if self.use_additional_convs:
|
96 |
+
xt = self.convs2[idx](xt)
|
97 |
+
x = xt + x
|
98 |
+
return x
|
IMSToucan/Layers/ResidualStack.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 Tomoki Hayashi
|
2 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
3 |
+
# Adapted by Florian Lux 2021
|
4 |
+
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
class ResidualStack(torch.nn.Module):
|
10 |
+
|
11 |
+
def __init__(self, kernel_size=3, channels=32, dilation=1, bias=True, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2},
|
12 |
+
pad="ReflectionPad1d", pad_params={}, ):
|
13 |
+
"""
|
14 |
+
Initialize ResidualStack module.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
kernel_size (int): Kernel size of dilation convolution layer.
|
18 |
+
channels (int): Number of channels of convolution layers.
|
19 |
+
dilation (int): Dilation factor.
|
20 |
+
bias (bool): Whether to add bias parameter in convolution layers.
|
21 |
+
nonlinear_activation (str): Activation function module name.
|
22 |
+
nonlinear_activation_params (dict): Hyperparameters for activation function.
|
23 |
+
pad (str): Padding function module name before dilated convolution layer.
|
24 |
+
pad_params (dict): Hyperparameters for padding function.
|
25 |
+
|
26 |
+
"""
|
27 |
+
super(ResidualStack, self).__init__()
|
28 |
+
|
29 |
+
# defile residual stack part
|
30 |
+
assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size."
|
31 |
+
self.stack = torch.nn.Sequential(getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
|
32 |
+
getattr(torch.nn, pad)((kernel_size - 1) // 2 * dilation, **pad_params),
|
33 |
+
torch.nn.Conv1d(channels, channels, kernel_size, dilation=dilation, bias=bias),
|
34 |
+
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
|
35 |
+
torch.nn.Conv1d(channels, channels, 1, bias=bias), )
|
36 |
+
|
37 |
+
# defile extra layer for skip connection
|
38 |
+
self.skip_layer = torch.nn.Conv1d(channels, channels, 1, bias=bias)
|
39 |
+
|
40 |
+
def forward(self, c):
|
41 |
+
"""
|
42 |
+
Calculate forward propagation.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
c (Tensor): Input tensor (B, channels, T).
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
Tensor: Output tensor (B, chennels, T).
|
49 |
+
|
50 |
+
"""
|
51 |
+
return self.stack(c) + self.skip_layer(c)
|
IMSToucan/Layers/STFT.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Taken from ESPNet
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.functional import stft as torch_stft
|
7 |
+
from torch_complex.tensor import ComplexTensor
|
8 |
+
|
9 |
+
from ..Utility.utils import make_pad_mask
|
10 |
+
|
11 |
+
|
12 |
+
class STFT(torch.nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, n_fft=512, win_length=None, hop_length=128, window="hann", center=True, normalized=False,
|
15 |
+
onesided=True):
|
16 |
+
super().__init__()
|
17 |
+
self.n_fft = n_fft
|
18 |
+
if win_length is None:
|
19 |
+
self.win_length = n_fft
|
20 |
+
else:
|
21 |
+
self.win_length = win_length
|
22 |
+
self.hop_length = hop_length
|
23 |
+
self.center = center
|
24 |
+
self.normalized = normalized
|
25 |
+
self.onesided = onesided
|
26 |
+
self.window = window
|
27 |
+
|
28 |
+
def extra_repr(self):
|
29 |
+
return (f"n_fft={self.n_fft}, "
|
30 |
+
f"win_length={self.win_length}, "
|
31 |
+
f"hop_length={self.hop_length}, "
|
32 |
+
f"center={self.center}, "
|
33 |
+
f"normalized={self.normalized}, "
|
34 |
+
f"onesided={self.onesided}")
|
35 |
+
|
36 |
+
def forward(self, input_wave, ilens=None):
|
37 |
+
"""
|
38 |
+
STFT forward function.
|
39 |
+
Args:
|
40 |
+
input_wave: (Batch, Nsamples) or (Batch, Nsample, Channels)
|
41 |
+
ilens: (Batch)
|
42 |
+
Returns:
|
43 |
+
output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2)
|
44 |
+
"""
|
45 |
+
bs = input_wave.size(0)
|
46 |
+
|
47 |
+
if input_wave.dim() == 3:
|
48 |
+
multi_channel = True
|
49 |
+
# input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample)
|
50 |
+
input_wave = input_wave.transpose(1, 2).reshape(-1, input_wave.size(1))
|
51 |
+
else:
|
52 |
+
multi_channel = False
|
53 |
+
|
54 |
+
# output: (Batch, Freq, Frames, 2=real_imag)
|
55 |
+
# or (Batch, Channel, Freq, Frames, 2=real_imag)
|
56 |
+
if self.window is not None:
|
57 |
+
window_func = getattr(torch, f"{self.window}_window")
|
58 |
+
window = window_func(self.win_length, dtype=input_wave.dtype, device=input_wave.device)
|
59 |
+
else:
|
60 |
+
window = None
|
61 |
+
|
62 |
+
complex_output = torch_stft(input=input_wave,
|
63 |
+
n_fft=self.n_fft,
|
64 |
+
win_length=self.win_length,
|
65 |
+
hop_length=self.hop_length,
|
66 |
+
center=self.center,
|
67 |
+
window=window,
|
68 |
+
normalized=self.normalized,
|
69 |
+
onesided=self.onesided,
|
70 |
+
return_complex=True)
|
71 |
+
output = torch.view_as_real(complex_output)
|
72 |
+
# output: (Batch, Freq, Frames, 2=real_imag)
|
73 |
+
# -> (Batch, Frames, Freq, 2=real_imag)
|
74 |
+
output = output.transpose(1, 2)
|
75 |
+
if multi_channel:
|
76 |
+
# output: (Batch * Channel, Frames, Freq, 2=real_imag)
|
77 |
+
# -> (Batch, Frame, Channel, Freq, 2=real_imag)
|
78 |
+
output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose(1, 2)
|
79 |
+
|
80 |
+
if ilens is not None:
|
81 |
+
if self.center:
|
82 |
+
pad = self.win_length // 2
|
83 |
+
ilens = ilens + 2 * pad
|
84 |
+
|
85 |
+
olens = (ilens - self.win_length) // self.hop_length + 1
|
86 |
+
output.masked_fill_(make_pad_mask(olens, output, 1), 0.0)
|
87 |
+
else:
|
88 |
+
olens = None
|
89 |
+
|
90 |
+
return output, olens
|
91 |
+
|
92 |
+
def inverse(self, input, ilens=None):
|
93 |
+
"""
|
94 |
+
Inverse STFT.
|
95 |
+
Args:
|
96 |
+
input: Tensor(batch, T, F, 2) or ComplexTensor(batch, T, F)
|
97 |
+
ilens: (batch,)
|
98 |
+
Returns:
|
99 |
+
wavs: (batch, samples)
|
100 |
+
ilens: (batch,)
|
101 |
+
"""
|
102 |
+
istft = torch.functional.istft
|
103 |
+
|
104 |
+
if self.window is not None:
|
105 |
+
window_func = getattr(torch, f"{self.window}_window")
|
106 |
+
window = window_func(self.win_length, dtype=input.dtype, device=input.device)
|
107 |
+
else:
|
108 |
+
window = None
|
109 |
+
|
110 |
+
if isinstance(input, ComplexTensor):
|
111 |
+
input = torch.stack([input.real, input.imag], dim=-1)
|
112 |
+
assert input.shape[-1] == 2
|
113 |
+
input = input.transpose(1, 2)
|
114 |
+
|
115 |
+
wavs = istft(input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=window, center=self.center,
|
116 |
+
normalized=self.normalized, onesided=self.onesided, length=ilens.max() if ilens is not None else ilens)
|
117 |
+
|
118 |
+
return wavs, ilens
|
IMSToucan/Layers/Swish.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 Johns Hopkins University (Shinji Watanabe)
|
2 |
+
# Northwestern Polytechnical University (Pengcheng Guo)
|
3 |
+
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
4 |
+
# Adapted by Florian Lux 2021
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
class Swish(torch.nn.Module):
|
10 |
+
"""
|
11 |
+
Construct an Swish activation function for Conformer.
|
12 |
+
"""
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
"""
|
16 |
+
Return Swish activation function.
|
17 |
+
"""
|
18 |
+
return x * torch.sigmoid(x)
|
IMSToucan/Layers/VariancePredictor.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 Tomoki Hayashi
|
2 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
3 |
+
# Adapted by Florian Lux 2021
|
4 |
+
|
5 |
+
from abc import ABC
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from .LayerNorm import LayerNorm
|
10 |
+
|
11 |
+
|
12 |
+
class VariancePredictor(torch.nn.Module, ABC):
|
13 |
+
"""
|
14 |
+
Variance predictor module.
|
15 |
+
|
16 |
+
This is a module of variance predictor described in `FastSpeech 2:
|
17 |
+
Fast and High-Quality End-to-End Text to Speech`_.
|
18 |
+
|
19 |
+
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
|
20 |
+
https://arxiv.org/abs/2006.04558
|
21 |
+
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, bias=True, dropout_rate=0.5, ):
|
25 |
+
"""
|
26 |
+
Initilize duration predictor module.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
idim (int): Input dimension.
|
30 |
+
n_layers (int, optional): Number of convolutional layers.
|
31 |
+
n_chans (int, optional): Number of channels of convolutional layers.
|
32 |
+
kernel_size (int, optional): Kernel size of convolutional layers.
|
33 |
+
dropout_rate (float, optional): Dropout rate.
|
34 |
+
"""
|
35 |
+
super().__init__()
|
36 |
+
self.conv = torch.nn.ModuleList()
|
37 |
+
for idx in range(n_layers):
|
38 |
+
in_chans = idim if idx == 0 else n_chans
|
39 |
+
self.conv += [
|
40 |
+
torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias, ), torch.nn.ReLU(),
|
41 |
+
LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate), )]
|
42 |
+
self.linear = torch.nn.Linear(n_chans, 1)
|
43 |
+
|
44 |
+
def forward(self, xs, x_masks=None):
|
45 |
+
"""
|
46 |
+
Calculate forward propagation.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
xs (Tensor): Batch of input sequences (B, Tmax, idim).
|
50 |
+
x_masks (ByteTensor, optional):
|
51 |
+
Batch of masks indicating padded part (B, Tmax).
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Tensor: Batch of predicted sequences (B, Tmax, 1).
|
55 |
+
"""
|
56 |
+
xs = xs.transpose(1, -1) # (B, idim, Tmax)
|
57 |
+
for f in self.conv:
|
58 |
+
xs = f(xs) # (B, C, Tmax)
|
59 |
+
|
60 |
+
xs = self.linear(xs.transpose(1, 2)) # (B, Tmax, 1)
|
61 |
+
|
62 |
+
if x_masks is not None:
|
63 |
+
xs = xs.masked_fill(x_masks, 0.0)
|
64 |
+
|
65 |
+
return xs
|
IMSToucan/Layers/__init__.py
ADDED
File without changes
|
IMSToucan/Preprocessing/ArticulatoryCombinedTextFrontend.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import panphon
|
5 |
+
import phonemizer
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from .papercup_features import generate_feature_table
|
9 |
+
|
10 |
+
|
11 |
+
class ArticulatoryCombinedTextFrontend:
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
language,
|
15 |
+
use_word_boundaries=False, # goes together well with
|
16 |
+
# parallel models and a aligner. Doesn't go together
|
17 |
+
# well with autoregressive models.
|
18 |
+
use_explicit_eos=True,
|
19 |
+
use_prosody=False, # unfortunately the non-segmental
|
20 |
+
# nature of prosodic markers mixed with the sequential
|
21 |
+
# phonemes hurts the performance of end-to-end models a
|
22 |
+
# lot, even though one might think enriching the input
|
23 |
+
# with such information would help.
|
24 |
+
use_lexical_stress=False,
|
25 |
+
silent=True,
|
26 |
+
allow_unknown=False,
|
27 |
+
add_silence_to_end=True,
|
28 |
+
strip_silence=True):
|
29 |
+
"""
|
30 |
+
Mostly preparing ID lookups
|
31 |
+
"""
|
32 |
+
self.strip_silence = strip_silence
|
33 |
+
self.use_word_boundaries = use_word_boundaries
|
34 |
+
self.allow_unknown = allow_unknown
|
35 |
+
self.use_explicit_eos = use_explicit_eos
|
36 |
+
self.use_prosody = use_prosody
|
37 |
+
self.use_stress = use_lexical_stress
|
38 |
+
self.add_silence_to_end = add_silence_to_end
|
39 |
+
self.feature_table = panphon.FeatureTable()
|
40 |
+
|
41 |
+
if language == "en":
|
42 |
+
self.g2p_lang = "en-us"
|
43 |
+
self.expand_abbreviations = english_text_expansion
|
44 |
+
if not silent:
|
45 |
+
print("Created an English Text-Frontend")
|
46 |
+
|
47 |
+
elif language == "de":
|
48 |
+
self.g2p_lang = "de"
|
49 |
+
self.expand_abbreviations = lambda x: x
|
50 |
+
if not silent:
|
51 |
+
print("Created a German Text-Frontend")
|
52 |
+
|
53 |
+
elif language == "el":
|
54 |
+
self.g2p_lang = "el"
|
55 |
+
self.expand_abbreviations = lambda x: x
|
56 |
+
if not silent:
|
57 |
+
print("Created a Greek Text-Frontend")
|
58 |
+
|
59 |
+
elif language == "es":
|
60 |
+
self.g2p_lang = "es"
|
61 |
+
self.expand_abbreviations = lambda x: x
|
62 |
+
if not silent:
|
63 |
+
print("Created a Spanish Text-Frontend")
|
64 |
+
|
65 |
+
elif language == "fi":
|
66 |
+
self.g2p_lang = "fi"
|
67 |
+
self.expand_abbreviations = lambda x: x
|
68 |
+
if not silent:
|
69 |
+
print("Created a Finnish Text-Frontend")
|
70 |
+
|
71 |
+
elif language == "ru":
|
72 |
+
self.g2p_lang = "ru"
|
73 |
+
self.expand_abbreviations = lambda x: x
|
74 |
+
if not silent:
|
75 |
+
print("Created a Russian Text-Frontend")
|
76 |
+
|
77 |
+
elif language == "hu":
|
78 |
+
self.g2p_lang = "hu"
|
79 |
+
self.expand_abbreviations = lambda x: x
|
80 |
+
if not silent:
|
81 |
+
print("Created a Hungarian Text-Frontend")
|
82 |
+
|
83 |
+
elif language == "nl":
|
84 |
+
self.g2p_lang = "nl"
|
85 |
+
self.expand_abbreviations = lambda x: x
|
86 |
+
if not silent:
|
87 |
+
print("Created a Dutch Text-Frontend")
|
88 |
+
|
89 |
+
elif language == "fr":
|
90 |
+
self.g2p_lang = "fr-fr"
|
91 |
+
self.expand_abbreviations = lambda x: x
|
92 |
+
if not silent:
|
93 |
+
print("Created a French Text-Frontend")
|
94 |
+
|
95 |
+
elif language == "it":
|
96 |
+
self.g2p_lang = "it"
|
97 |
+
self.expand_abbreviations = lambda x: x
|
98 |
+
if not silent:
|
99 |
+
print("Created a Italian Text-Frontend")
|
100 |
+
|
101 |
+
elif language == "pt":
|
102 |
+
self.g2p_lang = "pt"
|
103 |
+
self.expand_abbreviations = lambda x: x
|
104 |
+
if not silent:
|
105 |
+
print("Created a Portuguese Text-Frontend")
|
106 |
+
|
107 |
+
elif language == "pl":
|
108 |
+
self.g2p_lang = "pl"
|
109 |
+
self.expand_abbreviations = lambda x: x
|
110 |
+
if not silent:
|
111 |
+
print("Created a Polish Text-Frontend")
|
112 |
+
|
113 |
+
# remember to also update get_language_id() when adding something here
|
114 |
+
|
115 |
+
else:
|
116 |
+
print("Language not supported yet")
|
117 |
+
sys.exit()
|
118 |
+
|
119 |
+
self.phone_to_vector_papercup = generate_feature_table()
|
120 |
+
|
121 |
+
self.phone_to_vector = dict()
|
122 |
+
for phone in self.phone_to_vector_papercup:
|
123 |
+
panphon_features = self.feature_table.word_to_vector_list(phone, numeric=True)
|
124 |
+
if panphon_features == []:
|
125 |
+
panphon_features = [[0] * 24]
|
126 |
+
papercup_features = self.phone_to_vector_papercup[phone]
|
127 |
+
self.phone_to_vector[phone] = papercup_features + panphon_features[0]
|
128 |
+
|
129 |
+
self.phone_to_id = { # this lookup must be updated manually, because the only
|
130 |
+
# other way would be extracting them from a set, which can be non-deterministic
|
131 |
+
'~': 0,
|
132 |
+
'#': 1,
|
133 |
+
'?': 2,
|
134 |
+
'!': 3,
|
135 |
+
'.': 4,
|
136 |
+
'ɜ': 5,
|
137 |
+
'ɫ': 6,
|
138 |
+
'ə': 7,
|
139 |
+
'ɚ': 8,
|
140 |
+
'a': 9,
|
141 |
+
'ð': 10,
|
142 |
+
'ɛ': 11,
|
143 |
+
'ɪ': 12,
|
144 |
+
'ᵻ': 13,
|
145 |
+
'ŋ': 14,
|
146 |
+
'ɔ': 15,
|
147 |
+
'ɒ': 16,
|
148 |
+
'ɾ': 17,
|
149 |
+
'ʃ': 18,
|
150 |
+
'θ': 19,
|
151 |
+
'ʊ': 20,
|
152 |
+
'ʌ': 21,
|
153 |
+
'ʒ': 22,
|
154 |
+
'æ': 23,
|
155 |
+
'b': 24,
|
156 |
+
'ʔ': 25,
|
157 |
+
'd': 26,
|
158 |
+
'e': 27,
|
159 |
+
'f': 28,
|
160 |
+
'g': 29,
|
161 |
+
'h': 30,
|
162 |
+
'i': 31,
|
163 |
+
'j': 32,
|
164 |
+
'k': 33,
|
165 |
+
'l': 34,
|
166 |
+
'm': 35,
|
167 |
+
'n': 36,
|
168 |
+
'ɳ': 37,
|
169 |
+
'o': 38,
|
170 |
+
'p': 39,
|
171 |
+
'ɡ': 40,
|
172 |
+
'ɹ': 41,
|
173 |
+
'r': 42,
|
174 |
+
's': 43,
|
175 |
+
't': 44,
|
176 |
+
'u': 45,
|
177 |
+
'v': 46,
|
178 |
+
'w': 47,
|
179 |
+
'x': 48,
|
180 |
+
'z': 49,
|
181 |
+
'ʀ': 50,
|
182 |
+
'ø': 51,
|
183 |
+
'ç': 52,
|
184 |
+
'ɐ': 53,
|
185 |
+
'œ': 54,
|
186 |
+
'y': 55,
|
187 |
+
'ʏ': 56,
|
188 |
+
'ɑ': 57,
|
189 |
+
'c': 58,
|
190 |
+
'ɲ': 59,
|
191 |
+
'ɣ': 60,
|
192 |
+
'ʎ': 61,
|
193 |
+
'β': 62,
|
194 |
+
'ʝ': 63,
|
195 |
+
'ɟ': 64,
|
196 |
+
'q': 65,
|
197 |
+
'ɕ': 66,
|
198 |
+
'ʲ': 67,
|
199 |
+
'ɭ': 68,
|
200 |
+
'ɵ': 69,
|
201 |
+
'ʑ': 70,
|
202 |
+
'ʋ': 71,
|
203 |
+
'ʁ': 72,
|
204 |
+
'ɨ': 73,
|
205 |
+
'ʂ': 74,
|
206 |
+
'ɬ': 75,
|
207 |
+
} # for the states of the ctc loss and dijkstra/mas in the aligner
|
208 |
+
|
209 |
+
self.id_to_phone = {v: k for k, v in self.phone_to_id.items()}
|
210 |
+
|
211 |
+
def string_to_tensor(self, text, view=False, device="cpu", handle_missing=True, input_phonemes=False):
|
212 |
+
"""
|
213 |
+
Fixes unicode errors, expands some abbreviations,
|
214 |
+
turns graphemes into phonemes and then vectorizes
|
215 |
+
the sequence as articulatory features
|
216 |
+
"""
|
217 |
+
if input_phonemes:
|
218 |
+
phones = text
|
219 |
+
else:
|
220 |
+
phones = self.get_phone_string(text=text, include_eos_symbol=True)
|
221 |
+
if view:
|
222 |
+
print("Phonemes: \n{}\n".format(phones))
|
223 |
+
phones_vector = list()
|
224 |
+
# turn into numeric vectors
|
225 |
+
for char in phones:
|
226 |
+
if handle_missing:
|
227 |
+
try:
|
228 |
+
phones_vector.append(self.phone_to_vector[char])
|
229 |
+
except KeyError:
|
230 |
+
print("unknown phoneme: {}".format(char))
|
231 |
+
else:
|
232 |
+
phones_vector.append(self.phone_to_vector[char]) # leave error handling to elsewhere
|
233 |
+
|
234 |
+
return torch.Tensor(phones_vector, device=device)
|
235 |
+
|
236 |
+
def get_phone_string(self, text, include_eos_symbol=True):
|
237 |
+
# expand abbreviations
|
238 |
+
utt = self.expand_abbreviations(text)
|
239 |
+
# phonemize
|
240 |
+
phones = phonemizer.phonemize(utt,
|
241 |
+
language_switch='remove-flags',
|
242 |
+
backend="espeak",
|
243 |
+
language=self.g2p_lang,
|
244 |
+
preserve_punctuation=True,
|
245 |
+
strip=True,
|
246 |
+
punctuation_marks=';:,.!?¡¿—…"«»“”~/',
|
247 |
+
with_stress=self.use_stress).replace(";", ",").replace("/", " ").replace("—", "") \
|
248 |
+
.replace(":", ",").replace('"', ",").replace("-", ",").replace("...", ",").replace("-", ",").replace("\n", " ") \
|
249 |
+
.replace("\t", " ").replace("¡", "").replace("¿", "").replace(",", "~").replace(" ̃", "").replace('̩', "").replace("̃", "").replace("̪", "")
|
250 |
+
# less than 1 wide characters hidden here
|
251 |
+
phones = re.sub("~+", "~", phones)
|
252 |
+
if not self.use_prosody:
|
253 |
+
# retain ~ as heuristic pause marker, even though all other symbols are removed with this option.
|
254 |
+
# also retain . ? and ! since they can be indicators for the stop token
|
255 |
+
phones = phones.replace("ˌ", "").replace("ː", "").replace("ˑ", "") \
|
256 |
+
.replace("˘", "").replace("|", "").replace("‖", "")
|
257 |
+
if not self.use_word_boundaries:
|
258 |
+
phones = phones.replace(" ", "")
|
259 |
+
else:
|
260 |
+
phones = re.sub(r"\s+", " ", phones)
|
261 |
+
phones = re.sub(" ", "~", phones)
|
262 |
+
if self.strip_silence:
|
263 |
+
phones = phones.lstrip("~").rstrip("~")
|
264 |
+
if self.add_silence_to_end:
|
265 |
+
phones += "~" # adding a silence in the end during add_silence_to_end produces more natural sounding prosody
|
266 |
+
if include_eos_symbol:
|
267 |
+
phones += "#"
|
268 |
+
|
269 |
+
phones = "~" + phones
|
270 |
+
phones = re.sub("~+", "~", phones)
|
271 |
+
|
272 |
+
return phones
|
273 |
+
|
274 |
+
|
275 |
+
def english_text_expansion(text):
|
276 |
+
"""
|
277 |
+
Apply as small part of the tacotron style text cleaning pipeline, suitable for e.g. LJSpeech.
|
278 |
+
See https://github.com/keithito/tacotron/
|
279 |
+
Careful: Only apply to english datasets. Different languages need different cleaners.
|
280 |
+
"""
|
281 |
+
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in
|
282 |
+
[('Mrs.', 'misess'), ('Mr.', 'mister'), ('Dr.', 'doctor'), ('St.', 'saint'), ('Co.', 'company'), ('Jr.', 'junior'), ('Maj.', 'major'),
|
283 |
+
('Gen.', 'general'), ('Drs.', 'doctors'), ('Rev.', 'reverend'), ('Lt.', 'lieutenant'), ('Hon.', 'honorable'), ('Sgt.', 'sergeant'),
|
284 |
+
('Capt.', 'captain'), ('Esq.', 'esquire'), ('Ltd.', 'limited'), ('Col.', 'colonel'), ('Ft.', 'fort')]]
|
285 |
+
for regex, replacement in _abbreviations:
|
286 |
+
text = re.sub(regex, replacement, text)
|
287 |
+
return text
|
288 |
+
|
289 |
+
|
290 |
+
def get_language_id(language):
|
291 |
+
if language == "en":
|
292 |
+
return torch.LongTensor([0])
|
293 |
+
elif language == "de":
|
294 |
+
return torch.LongTensor([1])
|
295 |
+
elif language == "el":
|
296 |
+
return torch.LongTensor([2])
|
297 |
+
elif language == "es":
|
298 |
+
return torch.LongTensor([3])
|
299 |
+
elif language == "fi":
|
300 |
+
return torch.LongTensor([4])
|
301 |
+
elif language == "ru":
|
302 |
+
return torch.LongTensor([5])
|
303 |
+
elif language == "hu":
|
304 |
+
return torch.LongTensor([6])
|
305 |
+
elif language == "nl":
|
306 |
+
return torch.LongTensor([7])
|
307 |
+
elif language == "fr":
|
308 |
+
return torch.LongTensor([8])
|
309 |
+
elif language == "pt":
|
310 |
+
return torch.LongTensor([9])
|
311 |
+
elif language == "pl":
|
312 |
+
return torch.LongTensor([10])
|
313 |
+
elif language == "it":
|
314 |
+
return torch.LongTensor([11])
|
315 |
+
|
316 |
+
|
317 |
+
if __name__ == '__main__':
|
318 |
+
# test an English utterance
|
319 |
+
tfr_en = ArticulatoryCombinedTextFrontend(language="en")
|
320 |
+
print(tfr_en.string_to_tensor("This is a complex sentence, it even has a pause! But can it do this? Nice.", view=True))
|
321 |
+
|
322 |
+
tfr_en = ArticulatoryCombinedTextFrontend(language="de")
|
323 |
+
print(tfr_en.string_to_tensor("Alles klar, jetzt testen wir einen deutschen Satz. Ich hoffe es gibt nicht mehr viele unspezifizierte Phoneme.", view=True))
|
IMSToucan/Preprocessing/AudioPreprocessor.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import librosa.core as lb
|
3 |
+
import librosa.display as lbd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy
|
6 |
+
import numpy as np
|
7 |
+
import pyloudnorm as pyln
|
8 |
+
import torch
|
9 |
+
from torchaudio.transforms import Resample
|
10 |
+
|
11 |
+
|
12 |
+
class AudioPreprocessor:
|
13 |
+
|
14 |
+
def __init__(self, input_sr, output_sr=None, melspec_buckets=80, hop_length=256, n_fft=1024, cut_silence=False, device="cpu"):
|
15 |
+
"""
|
16 |
+
The parameters are by default set up to do well
|
17 |
+
on a 16kHz signal. A different sampling rate may
|
18 |
+
require different hop_length and n_fft (e.g.
|
19 |
+
doubling frequency --> doubling hop_length and
|
20 |
+
doubling n_fft)
|
21 |
+
"""
|
22 |
+
self.cut_silence = cut_silence
|
23 |
+
self.device = device
|
24 |
+
self.sr = input_sr
|
25 |
+
self.new_sr = output_sr
|
26 |
+
self.hop_length = hop_length
|
27 |
+
self.n_fft = n_fft
|
28 |
+
self.mel_buckets = melspec_buckets
|
29 |
+
self.meter = pyln.Meter(input_sr)
|
30 |
+
self.final_sr = input_sr
|
31 |
+
if cut_silence:
|
32 |
+
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True # torch 1.9 has a bug in the hub loading, this is a workaround
|
33 |
+
# careful: assumes 16kHz or 8kHz audio
|
34 |
+
self.silero_model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
|
35 |
+
model='silero_vad',
|
36 |
+
force_reload=False,
|
37 |
+
onnx=False,
|
38 |
+
verbose=False)
|
39 |
+
(self.get_speech_timestamps,
|
40 |
+
self.save_audio,
|
41 |
+
self.read_audio,
|
42 |
+
self.VADIterator,
|
43 |
+
self.collect_chunks) = utils
|
44 |
+
self.silero_model = self.silero_model.to(self.device)
|
45 |
+
if output_sr is not None and output_sr != input_sr:
|
46 |
+
self.resample = Resample(orig_freq=input_sr, new_freq=output_sr).to(self.device)
|
47 |
+
self.final_sr = output_sr
|
48 |
+
else:
|
49 |
+
self.resample = lambda x: x
|
50 |
+
|
51 |
+
def cut_silence_from_audio(self, audio):
|
52 |
+
"""
|
53 |
+
https://github.com/snakers4/silero-vad
|
54 |
+
"""
|
55 |
+
return self.collect_chunks(self.get_speech_timestamps(audio, self.silero_model, sampling_rate=self.final_sr), audio)
|
56 |
+
|
57 |
+
def to_mono(self, x):
|
58 |
+
"""
|
59 |
+
make sure we deal with a 1D array
|
60 |
+
"""
|
61 |
+
if len(x.shape) == 2:
|
62 |
+
return lb.to_mono(numpy.transpose(x))
|
63 |
+
else:
|
64 |
+
return x
|
65 |
+
|
66 |
+
def normalize_loudness(self, audio):
|
67 |
+
"""
|
68 |
+
normalize the amplitudes according to
|
69 |
+
their decibels, so this should turn any
|
70 |
+
signal with different magnitudes into
|
71 |
+
the same magnitude by analysing loudness
|
72 |
+
"""
|
73 |
+
loudness = self.meter.integrated_loudness(audio)
|
74 |
+
loud_normed = pyln.normalize.loudness(audio, loudness, -30.0)
|
75 |
+
peak = numpy.amax(numpy.abs(loud_normed))
|
76 |
+
peak_normed = numpy.divide(loud_normed, peak)
|
77 |
+
return peak_normed
|
78 |
+
|
79 |
+
def logmelfilterbank(self, audio, sampling_rate, fmin=40, fmax=8000, eps=1e-10):
|
80 |
+
"""
|
81 |
+
Compute log-Mel filterbank
|
82 |
+
|
83 |
+
one day this could be replaced by torchaudio's internal log10(melspec(audio)), but
|
84 |
+
for some reason it gives slightly different results, so in order not to break backwards
|
85 |
+
compatibility, this is kept for now. If there is ever a reason to completely re-train
|
86 |
+
all models, this would be a good opportunity to make the switch.
|
87 |
+
"""
|
88 |
+
if isinstance(audio, torch.Tensor):
|
89 |
+
audio = audio.numpy()
|
90 |
+
# get amplitude spectrogram
|
91 |
+
x_stft = librosa.stft(audio, n_fft=self.n_fft, hop_length=self.hop_length, win_length=None, window="hann", pad_mode="reflect")
|
92 |
+
spc = np.abs(x_stft).T
|
93 |
+
# get mel basis
|
94 |
+
fmin = 0 if fmin is None else fmin
|
95 |
+
fmax = sampling_rate / 2 if fmax is None else fmax
|
96 |
+
mel_basis = librosa.filters.mel(sampling_rate, self.n_fft, self.mel_buckets, fmin, fmax)
|
97 |
+
# apply log and return
|
98 |
+
return torch.Tensor(np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))).transpose(0, 1)
|
99 |
+
|
100 |
+
def normalize_audio(self, audio):
|
101 |
+
"""
|
102 |
+
one function to apply them all in an
|
103 |
+
order that makes sense.
|
104 |
+
"""
|
105 |
+
audio = self.to_mono(audio)
|
106 |
+
audio = self.normalize_loudness(audio)
|
107 |
+
audio = torch.Tensor(audio).to(self.device)
|
108 |
+
audio = self.resample(audio)
|
109 |
+
if self.cut_silence:
|
110 |
+
audio = self.cut_silence_from_audio(audio)
|
111 |
+
return audio.to("cpu")
|
112 |
+
|
113 |
+
def visualize_cleaning(self, unclean_audio):
|
114 |
+
"""
|
115 |
+
displays Mel Spectrogram of unclean audio
|
116 |
+
and then displays Mel Spectrogram of the
|
117 |
+
cleaned version.
|
118 |
+
"""
|
119 |
+
fig, ax = plt.subplots(nrows=2, ncols=1)
|
120 |
+
unclean_audio_mono = self.to_mono(unclean_audio)
|
121 |
+
unclean_spec = self.audio_to_mel_spec_tensor(unclean_audio_mono, normalize=False).numpy()
|
122 |
+
clean_spec = self.audio_to_mel_spec_tensor(unclean_audio_mono, normalize=True).numpy()
|
123 |
+
lbd.specshow(unclean_spec, sr=self.sr, cmap='GnBu', y_axis='mel', ax=ax[0], x_axis='time')
|
124 |
+
ax[0].set(title='Uncleaned Audio')
|
125 |
+
ax[0].label_outer()
|
126 |
+
if self.new_sr is not None:
|
127 |
+
lbd.specshow(clean_spec, sr=self.new_sr, cmap='GnBu', y_axis='mel', ax=ax[1], x_axis='time')
|
128 |
+
else:
|
129 |
+
lbd.specshow(clean_spec, sr=self.sr, cmap='GnBu', y_axis='mel', ax=ax[1], x_axis='time')
|
130 |
+
ax[1].set(title='Cleaned Audio')
|
131 |
+
ax[1].label_outer()
|
132 |
+
plt.show()
|
133 |
+
|
134 |
+
def audio_to_wave_tensor(self, audio, normalize=True):
|
135 |
+
if normalize:
|
136 |
+
return self.normalize_audio(audio)
|
137 |
+
else:
|
138 |
+
if isinstance(audio, torch.Tensor):
|
139 |
+
return audio
|
140 |
+
else:
|
141 |
+
return torch.Tensor(audio)
|
142 |
+
|
143 |
+
def audio_to_mel_spec_tensor(self, audio, normalize=True, explicit_sampling_rate=None):
|
144 |
+
"""
|
145 |
+
explicit_sampling_rate is for when
|
146 |
+
normalization has already been applied
|
147 |
+
and that included resampling. No way
|
148 |
+
to detect the current sr of the incoming
|
149 |
+
audio
|
150 |
+
"""
|
151 |
+
if explicit_sampling_rate is None:
|
152 |
+
if normalize:
|
153 |
+
audio = self.normalize_audio(audio)
|
154 |
+
return self.logmelfilterbank(audio=audio, sampling_rate=self.final_sr)
|
155 |
+
return self.logmelfilterbank(audio=audio, sampling_rate=self.sr)
|
156 |
+
if normalize:
|
157 |
+
audio = self.normalize_audio(audio)
|
158 |
+
return self.logmelfilterbank(audio=audio, sampling_rate=explicit_sampling_rate)
|
159 |
+
|
160 |
+
|
161 |
+
if __name__ == '__main__':
|
162 |
+
import soundfile
|
163 |
+
|
164 |
+
wav, sr = soundfile.read("../audios/test.wav")
|
165 |
+
ap = AudioPreprocessor(input_sr=sr, output_sr=16000)
|
166 |
+
ap.visualize_cleaning(wav)
|
IMSToucan/Preprocessing/ProsodicConditionExtractor.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import soundfile as sf
|
2 |
+
import torch
|
3 |
+
import torch.multiprocessing
|
4 |
+
import torch.multiprocessing
|
5 |
+
from numpy import trim_zeros
|
6 |
+
from speechbrain.pretrained import EncoderClassifier
|
7 |
+
|
8 |
+
from .AudioPreprocessor import AudioPreprocessor
|
9 |
+
|
10 |
+
|
11 |
+
class ProsodicConditionExtractor:
|
12 |
+
|
13 |
+
def __init__(self, sr, device=torch.device("cpu")):
|
14 |
+
self.ap = AudioPreprocessor(input_sr=sr, output_sr=16000, melspec_buckets=80, hop_length=256, n_fft=1024, cut_silence=False)
|
15 |
+
# https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
|
16 |
+
self.speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb",
|
17 |
+
run_opts={"device": str(device)},
|
18 |
+
savedir="Models/SpeakerEmbedding/speechbrain_speaker_embedding_ecapa")
|
19 |
+
# https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
|
20 |
+
self.speaker_embedding_func_xvector = EncoderClassifier.from_hparams(source="speechbrain/spkrec-xvect-voxceleb",
|
21 |
+
run_opts={"device": str(device)},
|
22 |
+
savedir="Models/SpeakerEmbedding/speechbrain_speaker_embedding_xvector")
|
23 |
+
|
24 |
+
def extract_condition_from_reference_wave(self, wave, already_normalized=False):
|
25 |
+
if already_normalized:
|
26 |
+
norm_wave = wave
|
27 |
+
else:
|
28 |
+
norm_wave = self.ap.audio_to_wave_tensor(normalize=True, audio=wave)
|
29 |
+
norm_wave = torch.tensor(trim_zeros(norm_wave.numpy()))
|
30 |
+
spk_emb_ecapa = self.speaker_embedding_func_ecapa.encode_batch(wavs=norm_wave.unsqueeze(0)).squeeze()
|
31 |
+
spk_emb_xvector = self.speaker_embedding_func_xvector.encode_batch(wavs=norm_wave.unsqueeze(0)).squeeze()
|
32 |
+
combined_utt_condition = torch.cat([spk_emb_ecapa.cpu(),
|
33 |
+
spk_emb_xvector.cpu()], dim=0)
|
34 |
+
return combined_utt_condition
|
35 |
+
|
36 |
+
|
37 |
+
if __name__ == '__main__':
|
38 |
+
wave, sr = sf.read("../audios/1.wav")
|
39 |
+
ext = ProsodicConditionExtractor(sr=sr)
|
40 |
+
print(ext.extract_condition_from_reference_wave(wave=wave).shape)
|
IMSToucan/Preprocessing/__init__.py
ADDED
File without changes
|
IMSToucan/Preprocessing/papercup_features.py
ADDED
@@ -0,0 +1,637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Derived from an open-source resource provided by Papercup Technologies Limited
|
2 |
+
# Resource-Author: Marlene Staib
|
3 |
+
# Modified by Florian Lux, 2021
|
4 |
+
|
5 |
+
def generate_feature_lookup():
|
6 |
+
return {
|
7 |
+
'~': {'symbol_type': 'silence'},
|
8 |
+
'#': {'symbol_type': 'end of sentence'},
|
9 |
+
'?': {'symbol_type': 'questionmark'},
|
10 |
+
'!': {'symbol_type': 'exclamationmark'},
|
11 |
+
'.': {'symbol_type': 'fullstop'},
|
12 |
+
'ɜ': {
|
13 |
+
'symbol_type' : 'phoneme',
|
14 |
+
'vowel_consonant' : 'vowel',
|
15 |
+
'VUV' : 'voiced',
|
16 |
+
'vowel_frontness' : 'central',
|
17 |
+
'vowel_openness' : 'open-mid',
|
18 |
+
'vowel_roundedness': 'unrounded',
|
19 |
+
},
|
20 |
+
'ɫ': {
|
21 |
+
'symbol_type' : 'phoneme',
|
22 |
+
'vowel_consonant' : 'consonant',
|
23 |
+
'VUV' : 'voiced',
|
24 |
+
'consonant_place' : 'alveolar',
|
25 |
+
'consonant_manner': 'lateral-approximant',
|
26 |
+
},
|
27 |
+
'ə': {
|
28 |
+
'symbol_type' : 'phoneme',
|
29 |
+
'vowel_consonant' : 'vowel',
|
30 |
+
'VUV' : 'voiced',
|
31 |
+
'vowel_frontness' : 'central',
|
32 |
+
'vowel_openness' : 'mid',
|
33 |
+
'vowel_roundedness': 'unrounded',
|
34 |
+
},
|
35 |
+
'ɚ': {
|
36 |
+
'symbol_type' : 'phoneme',
|
37 |
+
'vowel_consonant' : 'vowel',
|
38 |
+
'VUV' : 'voiced',
|
39 |
+
'vowel_frontness' : 'central',
|
40 |
+
'vowel_openness' : 'mid',
|
41 |
+
'vowel_roundedness': 'unrounded',
|
42 |
+
},
|
43 |
+
'a': {
|
44 |
+
'symbol_type' : 'phoneme',
|
45 |
+
'vowel_consonant' : 'vowel',
|
46 |
+
'VUV' : 'voiced',
|
47 |
+
'vowel_frontness' : 'front',
|
48 |
+
'vowel_openness' : 'open',
|
49 |
+
'vowel_roundedness': 'unrounded',
|
50 |
+
},
|
51 |
+
'ð': {
|
52 |
+
'symbol_type' : 'phoneme',
|
53 |
+
'vowel_consonant' : 'consonant',
|
54 |
+
'VUV' : 'voiced',
|
55 |
+
'consonant_place' : 'dental',
|
56 |
+
'consonant_manner': 'fricative'
|
57 |
+
},
|
58 |
+
'ɛ': {
|
59 |
+
'symbol_type' : 'phoneme',
|
60 |
+
'vowel_consonant' : 'vowel',
|
61 |
+
'VUV' : 'voiced',
|
62 |
+
'vowel_frontness' : 'front',
|
63 |
+
'vowel_openness' : 'open-mid',
|
64 |
+
'vowel_roundedness': 'unrounded',
|
65 |
+
},
|
66 |
+
'ɪ': {
|
67 |
+
'symbol_type' : 'phoneme',
|
68 |
+
'vowel_consonant' : 'vowel',
|
69 |
+
'VUV' : 'voiced',
|
70 |
+
'vowel_frontness' : 'front_central',
|
71 |
+
'vowel_openness' : 'close_close-mid',
|
72 |
+
'vowel_roundedness': 'unrounded',
|
73 |
+
},
|
74 |
+
'ᵻ': {
|
75 |
+
'symbol_type' : 'phoneme',
|
76 |
+
'vowel_consonant' : 'vowel',
|
77 |
+
'VUV' : 'voiced',
|
78 |
+
'vowel_frontness' : 'central',
|
79 |
+
'vowel_openness' : 'close',
|
80 |
+
'vowel_roundedness': 'unrounded',
|
81 |
+
},
|
82 |
+
'ŋ': {
|
83 |
+
'symbol_type' : 'phoneme',
|
84 |
+
'vowel_consonant' : 'consonant',
|
85 |
+
'VUV' : 'voiced',
|
86 |
+
'consonant_place' : 'velar',
|
87 |
+
'consonant_manner': 'nasal'
|
88 |
+
},
|
89 |
+
'ɔ': {
|
90 |
+
'symbol_type' : 'phoneme',
|
91 |
+
'vowel_consonant' : 'vowel',
|
92 |
+
'VUV' : 'voiced',
|
93 |
+
'vowel_frontness' : 'back',
|
94 |
+
'vowel_openness' : 'open-mid',
|
95 |
+
'vowel_roundedness': 'rounded',
|
96 |
+
},
|
97 |
+
'ɒ': {
|
98 |
+
'symbol_type' : 'phoneme',
|
99 |
+
'vowel_consonant' : 'vowel',
|
100 |
+
'VUV' : 'voiced',
|
101 |
+
'vowel_frontness' : 'back',
|
102 |
+
'vowel_openness' : 'open',
|
103 |
+
'vowel_roundedness': 'rounded',
|
104 |
+
},
|
105 |
+
'ɾ': {
|
106 |
+
'symbol_type' : 'phoneme',
|
107 |
+
'vowel_consonant' : 'consonant',
|
108 |
+
'VUV' : 'voiced',
|
109 |
+
'consonant_place' : 'alveolar',
|
110 |
+
'consonant_manner': 'tap'
|
111 |
+
},
|
112 |
+
'ʃ': {
|
113 |
+
'symbol_type' : 'phoneme',
|
114 |
+
'vowel_consonant' : 'consonant',
|
115 |
+
'VUV' : 'unvoiced',
|
116 |
+
'consonant_place' : 'postalveolar',
|
117 |
+
'consonant_manner': 'fricative'
|
118 |
+
},
|
119 |
+
'θ': {
|
120 |
+
'symbol_type' : 'phoneme',
|
121 |
+
'vowel_consonant' : 'consonant',
|
122 |
+
'VUV' : 'unvoiced',
|
123 |
+
'consonant_place' : 'dental',
|
124 |
+
'consonant_manner': 'fricative'
|
125 |
+
},
|
126 |
+
'ʊ': {
|
127 |
+
'symbol_type' : 'phoneme',
|
128 |
+
'vowel_consonant' : 'vowel',
|
129 |
+
'VUV' : 'voiced',
|
130 |
+
'vowel_frontness' : 'central_back',
|
131 |
+
'vowel_openness' : 'close_close-mid',
|
132 |
+
'vowel_roundedness': 'unrounded'
|
133 |
+
},
|
134 |
+
'ʌ': {
|
135 |
+
'symbol_type' : 'phoneme',
|
136 |
+
'vowel_consonant' : 'vowel',
|
137 |
+
'VUV' : 'voiced',
|
138 |
+
'vowel_frontness' : 'back',
|
139 |
+
'vowel_openness' : 'open-mid',
|
140 |
+
'vowel_roundedness': 'unrounded'
|
141 |
+
},
|
142 |
+
'ʒ': {
|
143 |
+
'symbol_type' : 'phoneme',
|
144 |
+
'vowel_consonant' : 'consonant',
|
145 |
+
'VUV' : 'voiced',
|
146 |
+
'consonant_place' : 'postalveolar',
|
147 |
+
'consonant_manner': 'fricative'
|
148 |
+
},
|
149 |
+
'æ': {
|
150 |
+
'symbol_type' : 'phoneme',
|
151 |
+
'vowel_consonant' : 'vowel',
|
152 |
+
'VUV' : 'voiced',
|
153 |
+
'vowel_frontness' : 'front',
|
154 |
+
'vowel_openness' : 'open-mid_open',
|
155 |
+
'vowel_roundedness': 'unrounded'
|
156 |
+
},
|
157 |
+
'b': {
|
158 |
+
'symbol_type' : 'phoneme',
|
159 |
+
'vowel_consonant' : 'consonant',
|
160 |
+
'VUV' : 'voiced',
|
161 |
+
'consonant_place' : 'bilabial',
|
162 |
+
'consonant_manner': 'stop'
|
163 |
+
},
|
164 |
+
'ʔ': {
|
165 |
+
'symbol_type' : 'phoneme',
|
166 |
+
'vowel_consonant' : 'consonant',
|
167 |
+
'VUV' : 'unvoiced',
|
168 |
+
'consonant_place' : 'glottal',
|
169 |
+
'consonant_manner': 'stop'
|
170 |
+
},
|
171 |
+
'd': {
|
172 |
+
'symbol_type' : 'phoneme',
|
173 |
+
'vowel_consonant' : 'consonant',
|
174 |
+
'VUV' : 'voiced',
|
175 |
+
'consonant_place' : 'alveolar',
|
176 |
+
'consonant_manner': 'stop'
|
177 |
+
},
|
178 |
+
'e': {
|
179 |
+
'symbol_type' : 'phoneme',
|
180 |
+
'vowel_consonant' : 'vowel',
|
181 |
+
'VUV' : 'voiced',
|
182 |
+
'vowel_frontness' : 'front',
|
183 |
+
'vowel_openness' : 'close-mid',
|
184 |
+
'vowel_roundedness': 'unrounded'
|
185 |
+
},
|
186 |
+
'f': {
|
187 |
+
'symbol_type' : 'phoneme',
|
188 |
+
'vowel_consonant' : 'consonant',
|
189 |
+
'VUV' : 'unvoiced',
|
190 |
+
'consonant_place' : 'labiodental',
|
191 |
+
'consonant_manner': 'fricative'
|
192 |
+
},
|
193 |
+
'g': {
|
194 |
+
'symbol_type' : 'phoneme',
|
195 |
+
'vowel_consonant' : 'consonant',
|
196 |
+
'VUV' : 'voiced',
|
197 |
+
'consonant_place' : 'velar',
|
198 |
+
'consonant_manner': 'stop'
|
199 |
+
},
|
200 |
+
'h': {
|
201 |
+
'symbol_type' : 'phoneme',
|
202 |
+
'vowel_consonant' : 'consonant',
|
203 |
+
'VUV' : 'unvoiced',
|
204 |
+
'consonant_place' : 'glottal',
|
205 |
+
'consonant_manner': 'fricative'
|
206 |
+
},
|
207 |
+
'i': {
|
208 |
+
'symbol_type' : 'phoneme',
|
209 |
+
'vowel_consonant' : 'vowel',
|
210 |
+
'VUV' : 'voiced',
|
211 |
+
'vowel_frontness' : 'front',
|
212 |
+
'vowel_openness' : 'close',
|
213 |
+
'vowel_roundedness': 'unrounded'
|
214 |
+
},
|
215 |
+
'j': {
|
216 |
+
'symbol_type' : 'phoneme',
|
217 |
+
'vowel_consonant' : 'consonant',
|
218 |
+
'VUV' : 'voiced',
|
219 |
+
'consonant_place' : 'palatal',
|
220 |
+
'consonant_manner': 'approximant'
|
221 |
+
},
|
222 |
+
'k': {
|
223 |
+
'symbol_type' : 'phoneme',
|
224 |
+
'vowel_consonant' : 'consonant',
|
225 |
+
'VUV' : 'unvoiced',
|
226 |
+
'consonant_place' : 'velar',
|
227 |
+
'consonant_manner': 'stop'
|
228 |
+
},
|
229 |
+
'l': {
|
230 |
+
'symbol_type' : 'phoneme',
|
231 |
+
'vowel_consonant' : 'consonant',
|
232 |
+
'VUV' : 'voiced',
|
233 |
+
'consonant_place' : 'alveolar',
|
234 |
+
'consonant_manner': 'lateral-approximant'
|
235 |
+
},
|
236 |
+
'm': {
|
237 |
+
'symbol_type' : 'phoneme',
|
238 |
+
'vowel_consonant' : 'consonant',
|
239 |
+
'VUV' : 'voiced',
|
240 |
+
'consonant_place' : 'bilabial',
|
241 |
+
'consonant_manner': 'nasal'
|
242 |
+
},
|
243 |
+
'n': {
|
244 |
+
'symbol_type' : 'phoneme',
|
245 |
+
'vowel_consonant' : 'consonant',
|
246 |
+
'VUV' : 'voiced',
|
247 |
+
'consonant_place' : 'alveolar',
|
248 |
+
'consonant_manner': 'nasal'
|
249 |
+
},
|
250 |
+
'ɳ': {
|
251 |
+
'symbol_type' : 'phoneme',
|
252 |
+
'vowel_consonant' : 'consonant',
|
253 |
+
'VUV' : 'voiced',
|
254 |
+
'consonant_place' : 'palatal',
|
255 |
+
'consonant_manner': 'nasal'
|
256 |
+
},
|
257 |
+
'o': {
|
258 |
+
'symbol_type' : 'phoneme',
|
259 |
+
'vowel_consonant' : 'vowel',
|
260 |
+
'VUV' : 'voiced',
|
261 |
+
'vowel_frontness' : 'back',
|
262 |
+
'vowel_openness' : 'close-mid',
|
263 |
+
'vowel_roundedness': 'rounded'
|
264 |
+
},
|
265 |
+
'p': {
|
266 |
+
'symbol_type' : 'phoneme',
|
267 |
+
'vowel_consonant' : 'consonant',
|
268 |
+
'VUV' : 'unvoiced',
|
269 |
+
'consonant_place' : 'bilabial',
|
270 |
+
'consonant_manner': 'stop'
|
271 |
+
},
|
272 |
+
'ɡ': {
|
273 |
+
'symbol_type' : 'phoneme',
|
274 |
+
'vowel_consonant' : 'consonant',
|
275 |
+
'VUV' : 'voiced',
|
276 |
+
'consonant_place' : 'velar',
|
277 |
+
'consonant_manner': 'stop'
|
278 |
+
},
|
279 |
+
'ɹ': {
|
280 |
+
'symbol_type' : 'phoneme',
|
281 |
+
'vowel_consonant' : 'consonant',
|
282 |
+
'VUV' : 'voiced',
|
283 |
+
'consonant_place' : 'alveolar',
|
284 |
+
'consonant_manner': 'approximant'
|
285 |
+
},
|
286 |
+
'r': {
|
287 |
+
'symbol_type' : 'phoneme',
|
288 |
+
'vowel_consonant' : 'consonant',
|
289 |
+
'VUV' : 'voiced',
|
290 |
+
'consonant_place' : 'alveolar',
|
291 |
+
'consonant_manner': 'trill'
|
292 |
+
},
|
293 |
+
's': {
|
294 |
+
'symbol_type' : 'phoneme',
|
295 |
+
'vowel_consonant' : 'consonant',
|
296 |
+
'VUV' : 'unvoiced',
|
297 |
+
'consonant_place' : 'alveolar',
|
298 |
+
'consonant_manner': 'fricative'
|
299 |
+
},
|
300 |
+
't': {
|
301 |
+
'symbol_type' : 'phoneme',
|
302 |
+
'vowel_consonant' : 'consonant',
|
303 |
+
'VUV' : 'unvoiced',
|
304 |
+
'consonant_place' : 'alveolar',
|
305 |
+
'consonant_manner': 'stop'
|
306 |
+
},
|
307 |
+
'u': {
|
308 |
+
'symbol_type' : 'phoneme',
|
309 |
+
'vowel_consonant' : 'vowel',
|
310 |
+
'VUV' : 'voiced',
|
311 |
+
'vowel_frontness' : 'back',
|
312 |
+
'vowel_openness' : 'close',
|
313 |
+
'vowel_roundedness': 'rounded',
|
314 |
+
},
|
315 |
+
'v': {
|
316 |
+
'symbol_type' : 'phoneme',
|
317 |
+
'vowel_consonant' : 'consonant',
|
318 |
+
'VUV' : 'voiced',
|
319 |
+
'consonant_place' : 'labiodental',
|
320 |
+
'consonant_manner': 'fricative'
|
321 |
+
},
|
322 |
+
'w': {
|
323 |
+
'symbol_type' : 'phoneme',
|
324 |
+
'vowel_consonant' : 'consonant',
|
325 |
+
'VUV' : 'voiced',
|
326 |
+
'consonant_place' : 'labial-velar',
|
327 |
+
'consonant_manner': 'approximant'
|
328 |
+
},
|
329 |
+
'x': {
|
330 |
+
'symbol_type' : 'phoneme',
|
331 |
+
'vowel_consonant' : 'consonant',
|
332 |
+
'VUV' : 'unvoiced',
|
333 |
+
'consonant_place' : 'velar',
|
334 |
+
'consonant_manner': 'fricative'
|
335 |
+
},
|
336 |
+
'z': {
|
337 |
+
'symbol_type' : 'phoneme',
|
338 |
+
'vowel_consonant' : 'consonant',
|
339 |
+
'VUV' : 'voiced',
|
340 |
+
'consonant_place' : 'alveolar',
|
341 |
+
'consonant_manner': 'fricative'
|
342 |
+
},
|
343 |
+
'ʀ': {
|
344 |
+
'symbol_type' : 'phoneme',
|
345 |
+
'vowel_consonant' : 'consonant',
|
346 |
+
'VUV' : 'voiced',
|
347 |
+
'consonant_place' : 'uvular',
|
348 |
+
'consonant_manner': 'trill'
|
349 |
+
},
|
350 |
+
'ø': {
|
351 |
+
'symbol_type' : 'phoneme',
|
352 |
+
'vowel_consonant' : 'vowel',
|
353 |
+
'VUV' : 'voiced',
|
354 |
+
'vowel_frontness' : 'front',
|
355 |
+
'vowel_openness' : 'close-mid',
|
356 |
+
'vowel_roundedness': 'rounded'
|
357 |
+
},
|
358 |
+
'ç': {
|
359 |
+
'symbol_type' : 'phoneme',
|
360 |
+
'vowel_consonant' : 'consonant',
|
361 |
+
'VUV' : 'unvoiced',
|
362 |
+
'consonant_place' : 'palatal',
|
363 |
+
'consonant_manner': 'fricative'
|
364 |
+
},
|
365 |
+
'ɐ': {
|
366 |
+
'symbol_type' : 'phoneme',
|
367 |
+
'vowel_consonant' : 'vowel',
|
368 |
+
'VUV' : 'voiced',
|
369 |
+
'vowel_frontness' : 'central',
|
370 |
+
'vowel_openness' : 'open',
|
371 |
+
'vowel_roundedness': 'unrounded'
|
372 |
+
},
|
373 |
+
'œ': {
|
374 |
+
'symbol_type' : 'phoneme',
|
375 |
+
'vowel_consonant' : 'vowel',
|
376 |
+
'VUV' : 'voiced',
|
377 |
+
'vowel_frontness' : 'front',
|
378 |
+
'vowel_openness' : 'open-mid',
|
379 |
+
'vowel_roundedness': 'rounded'
|
380 |
+
},
|
381 |
+
'y': {
|
382 |
+
'symbol_type' : 'phoneme',
|
383 |
+
'vowel_consonant' : 'vowel',
|
384 |
+
'VUV' : 'voiced',
|
385 |
+
'vowel_frontness' : 'front',
|
386 |
+
'vowel_openness' : 'close',
|
387 |
+
'vowel_roundedness': 'rounded'
|
388 |
+
},
|
389 |
+
'ʏ': {
|
390 |
+
'symbol_type' : 'phoneme',
|
391 |
+
'vowel_consonant' : 'vowel',
|
392 |
+
'VUV' : 'voiced',
|
393 |
+
'vowel_frontness' : 'front_central',
|
394 |
+
'vowel_openness' : 'close_close-mid',
|
395 |
+
'vowel_roundedness': 'rounded'
|
396 |
+
},
|
397 |
+
'ɑ': {
|
398 |
+
'symbol_type' : 'phoneme',
|
399 |
+
'vowel_consonant' : 'vowel',
|
400 |
+
'VUV' : 'voiced',
|
401 |
+
'vowel_frontness' : 'back',
|
402 |
+
'vowel_openness' : 'open',
|
403 |
+
'vowel_roundedness': 'unrounded'
|
404 |
+
},
|
405 |
+
'c': {
|
406 |
+
'symbol_type' : 'phoneme',
|
407 |
+
'vowel_consonant' : 'consonant',
|
408 |
+
'VUV' : 'unvoiced',
|
409 |
+
'consonant_place' : 'palatal',
|
410 |
+
'consonant_manner': 'stop'
|
411 |
+
},
|
412 |
+
'ɲ': {
|
413 |
+
'symbol_type' : 'phoneme',
|
414 |
+
'vowel_consonant' : 'consonant',
|
415 |
+
'VUV' : 'voiced',
|
416 |
+
'consonant_place' : 'palatal',
|
417 |
+
'consonant_manner': 'nasal'
|
418 |
+
},
|
419 |
+
'ɣ': {
|
420 |
+
'symbol_type' : 'phoneme',
|
421 |
+
'vowel_consonant' : 'consonant',
|
422 |
+
'VUV' : 'voiced',
|
423 |
+
'consonant_place' : 'velar',
|
424 |
+
'consonant_manner': 'fricative'
|
425 |
+
},
|
426 |
+
'ʎ': {
|
427 |
+
'symbol_type' : 'phoneme',
|
428 |
+
'vowel_consonant' : 'consonant',
|
429 |
+
'VUV' : 'voiced',
|
430 |
+
'consonant_place' : 'palatal',
|
431 |
+
'consonant_manner': 'lateral-approximant'
|
432 |
+
},
|
433 |
+
'β': {
|
434 |
+
'symbol_type' : 'phoneme',
|
435 |
+
'vowel_consonant' : 'consonant',
|
436 |
+
'VUV' : 'voiced',
|
437 |
+
'consonant_place' : 'bilabial',
|
438 |
+
'consonant_manner': 'fricative'
|
439 |
+
},
|
440 |
+
'ʝ': {
|
441 |
+
'symbol_type' : 'phoneme',
|
442 |
+
'vowel_consonant' : 'consonant',
|
443 |
+
'VUV' : 'voiced',
|
444 |
+
'consonant_place' : 'palatal',
|
445 |
+
'consonant_manner': 'fricative'
|
446 |
+
},
|
447 |
+
'ɟ': {
|
448 |
+
'symbol_type' : 'phoneme',
|
449 |
+
'vowel_consonant' : 'consonant',
|
450 |
+
'VUV' : 'voiced',
|
451 |
+
'consonant_place' : 'palatal',
|
452 |
+
'consonant_manner': 'stop'
|
453 |
+
},
|
454 |
+
'q': {
|
455 |
+
'symbol_type' : 'phoneme',
|
456 |
+
'vowel_consonant' : 'consonant',
|
457 |
+
'VUV' : 'unvoiced',
|
458 |
+
'consonant_place' : 'uvular',
|
459 |
+
'consonant_manner': 'stop'
|
460 |
+
},
|
461 |
+
'ɕ': {
|
462 |
+
'symbol_type' : 'phoneme',
|
463 |
+
'vowel_consonant' : 'consonant',
|
464 |
+
'VUV' : 'unvoiced',
|
465 |
+
'consonant_place' : 'alveolopalatal',
|
466 |
+
'consonant_manner': 'fricative'
|
467 |
+
},
|
468 |
+
'ʲ': {
|
469 |
+
'symbol_type' : 'phoneme',
|
470 |
+
'vowel_consonant' : 'consonant',
|
471 |
+
'VUV' : 'voiced',
|
472 |
+
'consonant_place' : 'palatal',
|
473 |
+
'consonant_manner': 'approximant'
|
474 |
+
},
|
475 |
+
'ɭ': {
|
476 |
+
'symbol_type' : 'phoneme',
|
477 |
+
'vowel_consonant' : 'consonant',
|
478 |
+
'VUV' : 'voiced',
|
479 |
+
'consonant_place' : 'palatal', # should be retroflex, but palatal should be close enough
|
480 |
+
'consonant_manner': 'lateral-approximant'
|
481 |
+
},
|
482 |
+
'ɵ': {
|
483 |
+
'symbol_type' : 'phoneme',
|
484 |
+
'vowel_consonant' : 'vowel',
|
485 |
+
'VUV' : 'voiced',
|
486 |
+
'vowel_frontness' : 'central',
|
487 |
+
'vowel_openness' : 'open-mid',
|
488 |
+
'vowel_roundedness': 'rounded'
|
489 |
+
},
|
490 |
+
'ʑ': {
|
491 |
+
'symbol_type' : 'phoneme',
|
492 |
+
'vowel_consonant' : 'consonant',
|
493 |
+
'VUV' : 'voiced',
|
494 |
+
'consonant_place' : 'alveolopalatal',
|
495 |
+
'consonant_manner': 'fricative'
|
496 |
+
},
|
497 |
+
'ʋ': {
|
498 |
+
'symbol_type' : 'phoneme',
|
499 |
+
'vowel_consonant' : 'consonant',
|
500 |
+
'VUV' : 'voiced',
|
501 |
+
'consonant_place' : 'labiodental',
|
502 |
+
'consonant_manner': 'approximant'
|
503 |
+
},
|
504 |
+
'ʁ': {
|
505 |
+
'symbol_type' : 'phoneme',
|
506 |
+
'vowel_consonant' : 'consonant',
|
507 |
+
'VUV' : 'voiced',
|
508 |
+
'consonant_place' : 'uvular',
|
509 |
+
'consonant_manner': 'fricative'
|
510 |
+
},
|
511 |
+
'ɨ': {
|
512 |
+
'symbol_type' : 'phoneme',
|
513 |
+
'vowel_consonant' : 'vowel',
|
514 |
+
'VUV' : 'voiced',
|
515 |
+
'vowel_frontness' : 'central',
|
516 |
+
'vowel_openness' : 'close',
|
517 |
+
'vowel_roundedness': 'unrounded'
|
518 |
+
},
|
519 |
+
'ʂ': {
|
520 |
+
'symbol_type' : 'phoneme',
|
521 |
+
'vowel_consonant' : 'consonant',
|
522 |
+
'VUV' : 'unvoiced',
|
523 |
+
'consonant_place' : 'palatal', # should be retroflex, but palatal should be close enough
|
524 |
+
'consonant_manner': 'fricative'
|
525 |
+
},
|
526 |
+
'ɬ': {
|
527 |
+
'symbol_type' : 'phoneme',
|
528 |
+
'vowel_consonant' : 'consonant',
|
529 |
+
'VUV' : 'unvoiced',
|
530 |
+
'consonant_place' : 'alveolar', # should be noted it's also lateral, but should be close enough
|
531 |
+
'consonant_manner': 'fricative'
|
532 |
+
},
|
533 |
+
} # REMEMBER to also add the phonemes added here to the ID lookup table in the TextFrontend as the new highest ID
|
534 |
+
|
535 |
+
|
536 |
+
def generate_feature_table():
|
537 |
+
ipa_to_phonemefeats = generate_feature_lookup()
|
538 |
+
|
539 |
+
feat_types = set()
|
540 |
+
for ipa in ipa_to_phonemefeats:
|
541 |
+
if len(ipa) == 1:
|
542 |
+
[feat_types.add(feat) for feat in ipa_to_phonemefeats[ipa].keys()]
|
543 |
+
|
544 |
+
feat_to_val_set = dict()
|
545 |
+
for feat in feat_types:
|
546 |
+
feat_to_val_set[feat] = set()
|
547 |
+
for ipa in ipa_to_phonemefeats:
|
548 |
+
if len(ipa) == 1:
|
549 |
+
for feat in ipa_to_phonemefeats[ipa]:
|
550 |
+
feat_to_val_set[feat].add(ipa_to_phonemefeats[ipa][feat])
|
551 |
+
|
552 |
+
# print(feat_to_val_set)
|
553 |
+
|
554 |
+
value_list = set()
|
555 |
+
for val_set in [feat_to_val_set[feat] for feat in feat_to_val_set]:
|
556 |
+
for value in val_set:
|
557 |
+
value_list.add(value)
|
558 |
+
# print("{")
|
559 |
+
# for index, value in enumerate(list(value_list)):
|
560 |
+
# print('"{}":{},'.format(value,index))
|
561 |
+
# print("}")
|
562 |
+
|
563 |
+
value_to_index = {
|
564 |
+
"dental" : 0,
|
565 |
+
"postalveolar" : 1,
|
566 |
+
"mid" : 2,
|
567 |
+
"close-mid" : 3,
|
568 |
+
"vowel" : 4,
|
569 |
+
"silence" : 5,
|
570 |
+
"consonant" : 6,
|
571 |
+
"close" : 7,
|
572 |
+
"velar" : 8,
|
573 |
+
"stop" : 9,
|
574 |
+
"palatal" : 10,
|
575 |
+
"nasal" : 11,
|
576 |
+
"glottal" : 12,
|
577 |
+
"central" : 13,
|
578 |
+
"back" : 14,
|
579 |
+
"approximant" : 15,
|
580 |
+
"uvular" : 16,
|
581 |
+
"open-mid" : 17,
|
582 |
+
"front_central" : 18,
|
583 |
+
"front" : 19,
|
584 |
+
"end of sentence" : 20,
|
585 |
+
"labiodental" : 21,
|
586 |
+
"close_close-mid" : 22,
|
587 |
+
"labial-velar" : 23,
|
588 |
+
"unvoiced" : 24,
|
589 |
+
"central_back" : 25,
|
590 |
+
"trill" : 26,
|
591 |
+
"rounded" : 27,
|
592 |
+
"open-mid_open" : 28,
|
593 |
+
"tap" : 29,
|
594 |
+
"alveolar" : 30,
|
595 |
+
"bilabial" : 31,
|
596 |
+
"phoneme" : 32,
|
597 |
+
"open" : 33,
|
598 |
+
"fricative" : 34,
|
599 |
+
"unrounded" : 35,
|
600 |
+
"lateral-approximant": 36,
|
601 |
+
"voiced" : 37,
|
602 |
+
"questionmark" : 38,
|
603 |
+
"exclamationmark" : 39,
|
604 |
+
"fullstop" : 40,
|
605 |
+
"alveolopalatal" : 41
|
606 |
+
}
|
607 |
+
|
608 |
+
phone_to_vector = dict()
|
609 |
+
for ipa in ipa_to_phonemefeats:
|
610 |
+
if len(ipa) == 1:
|
611 |
+
phone_to_vector[ipa] = [0] * sum([len(values) for values in [feat_to_val_set[feat] for feat in feat_to_val_set]])
|
612 |
+
for feat in ipa_to_phonemefeats[ipa]:
|
613 |
+
if ipa_to_phonemefeats[ipa][feat] in value_to_index:
|
614 |
+
phone_to_vector[ipa][value_to_index[ipa_to_phonemefeats[ipa][feat]]] = 1
|
615 |
+
|
616 |
+
for feat in feat_to_val_set:
|
617 |
+
for value in feat_to_val_set[feat]:
|
618 |
+
if value not in value_to_index:
|
619 |
+
print(f"Unknown feature value in featureset! {value}")
|
620 |
+
|
621 |
+
# print(f"{sum([len(values) for values in [feat_to_val_set[feat] for feat in feat_to_val_set]])} should be 42")
|
622 |
+
|
623 |
+
return phone_to_vector
|
624 |
+
|
625 |
+
|
626 |
+
def generate_phone_to_id_lookup():
|
627 |
+
ipa_to_phonemefeats = generate_feature_lookup()
|
628 |
+
count = 0
|
629 |
+
phone_to_id = dict()
|
630 |
+
for key in sorted(list(ipa_to_phonemefeats)): # careful: non-deterministic
|
631 |
+
phone_to_id[key] = count
|
632 |
+
count += 1
|
633 |
+
return phone_to_id
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == '__main__':
|
637 |
+
print(generate_phone_to_id_lookup())
|
IMSToucan/README.md
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
![image](Utility/toucan.png)
|
2 |
+
|
3 |
+
IMS Toucan is a toolkit for teaching, training and using state-of-the-art Speech Synthesis models, developed at the
|
4 |
+
**Institute for Natural Language Processing (IMS), University of Stuttgart, Germany**. Everything is pure Python and
|
5 |
+
PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.
|
6 |
+
|
7 |
+
The PyTorch Modules of [Tacotron 2](https://arxiv.org/abs/1712.05884)
|
8 |
+
and [FastSpeech 2](https://arxiv.org/abs/2006.04558) are taken from
|
9 |
+
[ESPnet](https://github.com/espnet/espnet), the PyTorch Modules of [HiFiGAN](https://arxiv.org/abs/2010.05646) are taken
|
10 |
+
from the [ParallelWaveGAN repository](https://github.com/kan-bayashi/ParallelWaveGAN)
|
11 |
+
which are also authored by the brilliant [Tomoki Hayashi](https://github.com/kan-bayashi).
|
12 |
+
|
13 |
+
For a version of the toolkit that includes TransformerTTS instead of Tacotron 2 and MelGAN instead of HiFiGAN, check out
|
14 |
+
the TransformerTTS and MelGAN branch. They are separated to keep the code clean, simple and minimal.
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
## Contents
|
19 |
+
|
20 |
+
- [New Features](#new-features)
|
21 |
+
- [Demonstration](#demonstration)
|
22 |
+
- [Installation](#installation)
|
23 |
+
+ [Basic Requirements](#basic-requirements)
|
24 |
+
+ [Speaker Embedding](#speaker-embedding)
|
25 |
+
+ [espeak-ng](#espeak-ng)
|
26 |
+
- [Creating a new Pipeline](#creating-a-new-pipeline)
|
27 |
+
* [Build a HiFi-GAN Pipeline](#build-a-hifi-gan-pipeline)
|
28 |
+
* [Build a FastSpeech 2 Pipeline](#build-a-fastspeech-2-pipeline)
|
29 |
+
- [Training a Model](#training-a-model)
|
30 |
+
- [Creating a new InferenceInterface](#creating-a-new-inferenceinterface)
|
31 |
+
- [Using a trained Model for Inference](#using-a-trained-model-for-inference)
|
32 |
+
- [FAQ](#faq)
|
33 |
+
- [Citation](#citation)
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
## New Features
|
38 |
+
|
39 |
+
- [As shown in this paper](http://festvox.org/blizzard/bc2021/BC21_DelightfulTTS.pdf) vocoders can be used to perform
|
40 |
+
super-resolution and spectrogram inversion simultaneously. We added this to our HiFi-GAN vocoder. It now takes 16kHz
|
41 |
+
spectrograms as input, but produces 48kHz waveforms.
|
42 |
+
- We officially introduced IMS Toucan in
|
43 |
+
[our contribution to the Blizzard Challenge 2021](http://festvox.org/blizzard/bc2021/BC21_IMS.pdf). Check out the
|
44 |
+
bottom of the readme for a bibtex entry.
|
45 |
+
- We now use articulatory representations of phonemes as the input for all models. This allows us to easily use
|
46 |
+
multilingual data.
|
47 |
+
- We provide a checkpoint trained with [model agnostic meta learning](https://arxiv.org/abs/1703.03400) from which you
|
48 |
+
should be able to fine-tune a model with very little data in almost any language.
|
49 |
+
- We now use a small self-contained Aligner that is trained with CTC, inspired by
|
50 |
+
[this implementation](https://github.com/as-ideas/DeepForcedAligner). This allows us to get rid of the dependence on
|
51 |
+
autoregressive models. Tacotron 2 is thus now also no longer in this branch, but still present in other branches,
|
52 |
+
similar to TransformerTTS.
|
53 |
+
|
54 |
+
---
|
55 |
+
|
56 |
+
## Demonstration
|
57 |
+
|
58 |
+
[Here are two sentences](https://drive.google.com/file/d/1ltAyR2EwAbmDo2hgkx1mvUny4FuxYmru/view?usp=sharing)
|
59 |
+
produced by Tacotron 2 combined with HiFi-GAN, trained on
|
60 |
+
[Nancy Krebs](https://www.cstr.ed.ac.uk/projects/blizzard/2011/lessac_blizzard2011/) using this toolkit.
|
61 |
+
|
62 |
+
[Here is some speech](https://drive.google.com/file/d/1mZ1LvTlY6pJ5ZQ4UXZ9jbzB651mufBrB/view?usp=sharing)
|
63 |
+
produced by FastSpeech 2 and MelGAN trained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/)
|
64 |
+
using this toolkit.
|
65 |
+
|
66 |
+
And [here is a sentence](https://drive.google.com/file/d/1FT49Jf0yyibwMDbsEJEO9mjwHkHRIGXc/view?usp=sharing)
|
67 |
+
produced by TransformerTTS and MelGAN trained on [Thorsten](https://github.com/thorstenMueller/deep-learning-german-tts)
|
68 |
+
using this toolkit.
|
69 |
+
|
70 |
+
[Here is some speech](https://drive.google.com/file/d/14nPo2o1VKtWLPGF7e_0TxL8XGI3n7tAs/view?usp=sharing)
|
71 |
+
produced by a multi-speaker FastSpeech 2 with MelGAN trained on
|
72 |
+
[LibriTTS](https://research.google/tools/datasets/libri-tts/) using this toolkit. Fans of the videogame Portal may
|
73 |
+
recognize who was used as the reference speaker for this utterance.
|
74 |
+
|
75 |
+
[Interactive Demo of our entry to the Blizzard Challenge 2021.](https://colab.research.google.com/drive/1bRaySf8U55MRPaxqBr8huWrzCOzlxVqw)
|
76 |
+
This is based on an older version of the toolkit though. It uses FastSpeech2 and MelGAN as vocoder and is trained on 5
|
77 |
+
hours of Spanish.
|
78 |
+
|
79 |
+
---
|
80 |
+
|
81 |
+
## Installation
|
82 |
+
|
83 |
+
#### Basic Requirements
|
84 |
+
|
85 |
+
To install this toolkit, clone it onto the machine you want to use it on
|
86 |
+
(should have at least one GPU if you intend to train models on that machine. For inference, you can get by without GPU).
|
87 |
+
Navigate to the directory you have cloned. We are going to create and activate a
|
88 |
+
[conda virtual environment](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
|
89 |
+
to install the basic requirements into. After creating the environment, the command you need to use to activate the
|
90 |
+
virtual environment is displayed. The commands below show everything you need to do.
|
91 |
+
|
92 |
+
```
|
93 |
+
conda create --prefix ./toucan_conda_venv --no-default-packages python=3.8
|
94 |
+
|
95 |
+
pip install --no-cache-dir -r requirements.txt
|
96 |
+
|
97 |
+
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
|
98 |
+
```
|
99 |
+
|
100 |
+
#### Speaker Embedding
|
101 |
+
|
102 |
+
As [NVIDIA has shown](https://arxiv.org/pdf/2110.05798.pdf), you get better results by fine-tuning a pretrained model on
|
103 |
+
a new speaker, rather than training a multispeaker model. We have thus dropped support for zero-shot multispeaker models
|
104 |
+
using speaker embeddings. However we still
|
105 |
+
use [Speechbrain's ECAPA-TDNN](https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb) for a cycle consistency loss to
|
106 |
+
make adapting to new speakers a bit faster.
|
107 |
+
|
108 |
+
In the current version of the toolkit no further action should be required. When you are using multispeaker for the
|
109 |
+
first time, it requires an internet connection to download the pretrained models though.
|
110 |
+
|
111 |
+
#### espeak-ng
|
112 |
+
|
113 |
+
And finally you need to have espeak-ng installed on your system, because it is used as backend for the phonemizer. If
|
114 |
+
you replace the phonemizer, you don't need it. On most Linux environments it will be installed already, and if it is
|
115 |
+
not, and you have the sufficient rights, you can install it by simply running
|
116 |
+
|
117 |
+
```
|
118 |
+
apt-get install espeak-ng
|
119 |
+
```
|
120 |
+
|
121 |
+
---
|
122 |
+
|
123 |
+
## Creating a new Pipeline
|
124 |
+
|
125 |
+
To create a new pipeline to train a HiFiGAN vocoder, you only need a set of audio files. To create a new pipeline for a
|
126 |
+
FastSpeech 2, you need audio files, corresponding text labels, and an already trained Aligner model to estimate the
|
127 |
+
duration information that FastSpeech 2 needs as input. Let's go through them in order of increasing complexity.
|
128 |
+
|
129 |
+
### Build a HiFi-GAN Pipeline
|
130 |
+
|
131 |
+
In the directory called
|
132 |
+
*Utility* there is a file called
|
133 |
+
*file_lists.py*. In this file you should write a function that returns a list of all the absolute paths to each of the
|
134 |
+
audio files in your dataset as strings.
|
135 |
+
|
136 |
+
Then go to the directory
|
137 |
+
*TrainingInterfaces/TrainingPipelines*. In there, make a copy of any existing pipeline that has HiFiGAN in its name. We
|
138 |
+
will use this as reference and only make the necessary changes to use the new dataset. Import the function you have just
|
139 |
+
written as
|
140 |
+
*get_file_list*. Now look out for a variable called
|
141 |
+
*model_save_dir*. This is the default directory that checkpoints will be saved into, unless you specify another one when
|
142 |
+
calling the training script. Change it to whatever you like.
|
143 |
+
|
144 |
+
Now you need to add your newly created pipeline to the pipeline dictionary in the file
|
145 |
+
*run_training_pipeline.py* in the top level of the toolkit. In this file, import the
|
146 |
+
*run* function from the pipeline you just created and give it a speaking name. Now in the
|
147 |
+
*pipeline_dict*, add your imported function as value and use as key a shorthand that makes sense. And just like that
|
148 |
+
you're done.
|
149 |
+
|
150 |
+
### Build a FastSpeech 2 Pipeline
|
151 |
+
|
152 |
+
In the directory called
|
153 |
+
*Utility* there is a file called
|
154 |
+
*path_to_transcript_dicts.py*. In this file you should write a function that returns a dictionary that has all the
|
155 |
+
absolute paths to each of the audio files in your dataset as strings as the keys and the textual transcriptions of the
|
156 |
+
corresponding audios as the values.
|
157 |
+
|
158 |
+
Then go to the directory
|
159 |
+
*TrainingInterfaces/TrainingPipelines*. In there, make a copy of any existing pipeline that has FastSpeech 2 in its
|
160 |
+
name. We will use this copy as reference and only make the necessary changes to use the new dataset. Import the function
|
161 |
+
you have just written as
|
162 |
+
*build_path_to_transcript_dict*. Since the data will be processed a considerable amount, a cache will be built and saved
|
163 |
+
as file for quick and easy restarts. So find the variable
|
164 |
+
*cache_dir* and adapt it to your needs. The same goes for the variable
|
165 |
+
*save_dir*, which is where the checkpoints will be saved to. This is a default value, you can overwrite it when calling
|
166 |
+
the pipeline later using a command line argument, in case you want to fine-tune from a checkpoint and thus save into a
|
167 |
+
different directory.
|
168 |
+
|
169 |
+
In your new pipeline file, look out for the line in which the
|
170 |
+
*acoustic_model* is loaded. Change the path to the checkpoint of an Aligner model. It can either be the one that is
|
171 |
+
supplied with the toolkit in the download script, or one that you trained yourself. In the example pipelines, the one
|
172 |
+
that we provide is finetuned to the dataset it is applied to before it is used to extract durations.
|
173 |
+
|
174 |
+
Since we are using text here, we have to make sure that the text processing is adequate for the language. So check in
|
175 |
+
*Preprocessing/TextFrontend* whether the TextFrontend already has a language ID (e.g. 'en' and 'de') for the language of
|
176 |
+
your dataset. If not, you'll have to implement handling for that, but it should be pretty simple by just doing it
|
177 |
+
analogous to what is there already. Now back in the pipeline, change the
|
178 |
+
*lang* argument in the creation of the dataset and in the call to the train loop function to the language ID that
|
179 |
+
matches your data.
|
180 |
+
|
181 |
+
Now navigate to the implementation of the
|
182 |
+
*train_loop* that is called in the pipeline. In this file, find the function called
|
183 |
+
*plot_progress_spec*. This function will produce spectrogram plots during training, which is the most important way to
|
184 |
+
monitor the progress of the training. In there, you may need to add an example sentence for the language of the data you
|
185 |
+
are using. It should all be pretty clear from looking at it.
|
186 |
+
|
187 |
+
Once this is done, we are almost done, now we just need to make it available to the
|
188 |
+
*run_training_pipeline.py* file in the top level. In said file, import the
|
189 |
+
*run* function from the pipeline you just created and give it a speaking name. Now in the
|
190 |
+
*pipeline_dict*, add your imported function as value and use as key a shorthand that makes sense. And that's it.
|
191 |
+
|
192 |
+
---
|
193 |
+
|
194 |
+
## Training a Model
|
195 |
+
|
196 |
+
Once you have a pipeline built, training is super easy. Just activate your virtual environment and run the command
|
197 |
+
below. You might want to use something like nohup to keep it running after you log out from the server (then you should
|
198 |
+
also add -u as option to python) and add an & to start it in the background. Also, you might want to direct the std:out
|
199 |
+
and std:err into a file using > but all of that is just standard shell use and has nothing to do with the toolkit.
|
200 |
+
|
201 |
+
```
|
202 |
+
python run_training_pipeline.py <shorthand of the pipeline>
|
203 |
+
```
|
204 |
+
|
205 |
+
You can supply any of the following arguments, but don't have to (although for training you should definitely specify at
|
206 |
+
least a GPU ID).
|
207 |
+
|
208 |
+
```
|
209 |
+
--gpu_id <ID of the GPU you wish to use, as displayed with nvidia-smi, default is cpu>
|
210 |
+
|
211 |
+
--resume_checkpoint <path to a checkpoint to load>
|
212 |
+
|
213 |
+
--resume (if this is present, the furthest checkpoint available will be loaded automatically)
|
214 |
+
|
215 |
+
--finetune (if this is present, the provided checkpoint will be fine-tuned on the data from this pipeline)
|
216 |
+
|
217 |
+
--model_save_dir <path to a directory where the checkpoints should be saved>
|
218 |
+
```
|
219 |
+
|
220 |
+
After every epoch, some logs will be written to the console. If the loss becomes NaN, you'll need to use a smaller
|
221 |
+
learning rate or more warmup steps in the arguments of the call to the training_loop in the pipeline you are running.
|
222 |
+
|
223 |
+
If you get cuda out of memory errors, you need to decrease the batchsize in the arguments of the call to the
|
224 |
+
training_loop in the pipeline you are running. Try decreasing the batchsize in small steps until you get no more out of
|
225 |
+
cuda memory errors. Decreasing the batchsize may also require you to use a smaller learning rate. The use of GroupNorm
|
226 |
+
should make it so that the training remains mostly stable.
|
227 |
+
|
228 |
+
Speaking of plots: in the directory you specified for saving model's checkpoint files and self-explanatory visualization
|
229 |
+
data will appear. Since the checkpoints are quite big, only the five most recent ones will be kept. Training will stop
|
230 |
+
after 500,000 for FastSpeech 2, and after 2,500,000 steps for HiFiGAN. Depending on the machine and configuration you
|
231 |
+
are using this will take multiple days, so verify that everything works on small tests before running the big thing. If
|
232 |
+
you want to stop earlier, just kill the process, since everything is daemonic all the child-processes should die with
|
233 |
+
it. In case there are some ghost-processes left behind, you can use the following command to find them and kill them
|
234 |
+
manually.
|
235 |
+
|
236 |
+
```
|
237 |
+
fuser -v /dev/nvidia*
|
238 |
+
```
|
239 |
+
|
240 |
+
After training is complete, it is recommended to run
|
241 |
+
*run_weight_averaging.py*. If you made no changes to the architectures and stuck to the default directory layout, it
|
242 |
+
will automatically load any models you produced with one pipeline, average their parameters to get a slightly more
|
243 |
+
robust model and save the result as
|
244 |
+
*best.pt* in the same directory where all the corresponding checkpoints lie. This also compresses the file size
|
245 |
+
significantly, so you should do this and then use the
|
246 |
+
*best.pt* model for inference.
|
247 |
+
|
248 |
+
---
|
249 |
+
|
250 |
+
## Creating a new InferenceInterface
|
251 |
+
|
252 |
+
To build a new
|
253 |
+
*InferenceInterface*, which you can then use for super simple inference, we're going to use an existing one as template
|
254 |
+
again. Make a copy of the
|
255 |
+
*InferenceInterface*. Change the name of the class in the copy and change the paths to the models to use the trained
|
256 |
+
models of your choice. Instantiate the model with the same hyperparameters that you used when you created it in the
|
257 |
+
corresponding training pipeline. The last thing to check is the language that you supply to the text frontend. Make sure
|
258 |
+
it matches what you used during training.
|
259 |
+
|
260 |
+
With your newly created
|
261 |
+
*InferenceInterface*, you can use your trained models pretty much anywhere, e.g. in other projects. All you need is the
|
262 |
+
*Utility* directory, the
|
263 |
+
*Layers*
|
264 |
+
directory, the
|
265 |
+
*Preprocessing* directory and the
|
266 |
+
*InferenceInterfaces* directory (and of course your model checkpoint). That's all the code you need, it works
|
267 |
+
standalone.
|
268 |
+
|
269 |
+
---
|
270 |
+
|
271 |
+
## Using a trained Model for Inference
|
272 |
+
|
273 |
+
An
|
274 |
+
*InferenceInterface* contains two useful methods. They are
|
275 |
+
*read_to_file* and
|
276 |
+
*read_aloud*.
|
277 |
+
|
278 |
+
- *read_to_file* takes as input a list of strings and a filename. It will synthesize the sentences in the list and
|
279 |
+
concatenate them with a short pause inbetween and write them to the filepath you supply as the other argument.
|
280 |
+
|
281 |
+
- *read_aloud* takes just a string, which it will then convert to speech and immediately play using the system's
|
282 |
+
speakers. If you set the optional argument
|
283 |
+
*view* to
|
284 |
+
*True* when calling it, it will also show a plot of the phonemes it produced, the spectrogram it came up with, and the
|
285 |
+
wave it created from that spectrogram. So all the representations can be seen, text to phoneme, phoneme to spectrogram
|
286 |
+
and finally spectrogram to wave.
|
287 |
+
|
288 |
+
Those methods are used in demo code in the toolkit. In
|
289 |
+
*run_interactive_demo.py* and
|
290 |
+
*run_text_to_file_reader.py*, you can import
|
291 |
+
*InferenceInterfaces* that you created and add them to the dictionary in each of the files with a shorthand that makes
|
292 |
+
sense. In the interactive demo, you can just call the python script, then type in the shorthand when prompted and
|
293 |
+
immediately listen to your synthesis saying whatever you put in next (be wary of out of memory errors for too long
|
294 |
+
inputs). In the text reader demo script you have to call the function that wraps around the
|
295 |
+
*InferenceInterface* and supply the shorthand of your choice. It should be pretty clear from looking at it.
|
296 |
+
|
297 |
+
---
|
298 |
+
|
299 |
+
## FAQ
|
300 |
+
|
301 |
+
Here are a few points that were brought up by users:
|
302 |
+
|
303 |
+
- My error message shows GPU0, even though I specified a different GPU - The way GPU selection works is that the
|
304 |
+
specified GPU is set as the only visible device, in order to avoid backend stuff running accidentally on different
|
305 |
+
GPUs. So internally the program will name the device GPU0, because it is the only GPU it can see. It is actually
|
306 |
+
running on the GPU you specified.
|
307 |
+
|
308 |
+
---
|
309 |
+
|
310 |
+
This toolkit has been written by Florian Lux (except for the pytorch modules taken
|
311 |
+
from [ESPnet](https://github.com/espnet/espnet) and
|
312 |
+
[ParallelWaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN), as mentioned above), so if you come across problems
|
313 |
+
or questions, feel free to [write a mail](mailto:[email protected]). Also let me know if you do something
|
314 |
+
cool with it. Thank you for reading.
|
315 |
+
|
316 |
+
## Citation
|
317 |
+
|
318 |
+
```
|
319 |
+
@inproceedings{lux2021toucan,
|
320 |
+
title={{The IMS Toucan system for the Blizzard Challenge 2021}},
|
321 |
+
author={Florian Lux and Julia Koch and Antje Schweitzer and Ngoc Thang Vu},
|
322 |
+
year={2021},
|
323 |
+
booktitle={Proc. Blizzard Challenge Workshop},
|
324 |
+
volume={2021},
|
325 |
+
publisher={{Speech Synthesis SIG}}
|
326 |
+
}
|
327 |
+
```
|
IMSToucan/Utility/SpeakerVisualization.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib
|
2 |
+
import numpy
|
3 |
+
import soundfile as sf
|
4 |
+
from matplotlib import pyplot as plt
|
5 |
+
from matplotlib import cm
|
6 |
+
matplotlib.use("tkAgg")
|
7 |
+
from sklearn.manifold import TSNE
|
8 |
+
from sklearn.decomposition import PCA
|
9 |
+
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from Preprocessing.ProsodicConditionExtractor import ProsodicConditionExtractor
|
13 |
+
|
14 |
+
|
15 |
+
class Visualizer:
|
16 |
+
|
17 |
+
def __init__(self, sr=48000, device="cpu"):
|
18 |
+
"""
|
19 |
+
Args:
|
20 |
+
sr: The sampling rate of the audios you want to visualize.
|
21 |
+
"""
|
22 |
+
self.tsne = TSNE(n_jobs=-1)
|
23 |
+
self.pca = PCA(n_components=2)
|
24 |
+
self.pros_cond_ext = ProsodicConditionExtractor(sr=sr, device=device)
|
25 |
+
self.sr = sr
|
26 |
+
|
27 |
+
def visualize_speaker_embeddings(self, label_to_filepaths, title_of_plot, save_file_path=None, include_pca=True, legend=True):
|
28 |
+
label_list = list()
|
29 |
+
embedding_list = list()
|
30 |
+
for label in tqdm(label_to_filepaths):
|
31 |
+
for filepath in tqdm(label_to_filepaths[label]):
|
32 |
+
wave, sr = sf.read(filepath)
|
33 |
+
if len(wave) / sr < 1:
|
34 |
+
continue
|
35 |
+
if self.sr != sr:
|
36 |
+
print("One of the Audios you included doesn't match the sampling rate of this visualizer object, "
|
37 |
+
"creating a new condition extractor. Results will be correct, but if there are too many cases "
|
38 |
+
"of changing samplingrate, this will run very slowly.")
|
39 |
+
self.pros_cond_ext = ProsodicConditionExtractor(sr=sr)
|
40 |
+
self.sr = sr
|
41 |
+
embedding_list.append(self.pros_cond_ext.extract_condition_from_reference_wave(wave).squeeze().numpy())
|
42 |
+
label_list.append(label)
|
43 |
+
embeddings_as_array = numpy.array(embedding_list)
|
44 |
+
|
45 |
+
dimensionality_reduced_embeddings_tsne = self.tsne.fit_transform(embeddings_as_array)
|
46 |
+
self._plot_embeddings(projected_data=dimensionality_reduced_embeddings_tsne,
|
47 |
+
labels=label_list,
|
48 |
+
title=title_of_plot + " t-SNE" if include_pca else title_of_plot,
|
49 |
+
save_file_path=save_file_path,
|
50 |
+
legend=legend)
|
51 |
+
|
52 |
+
if include_pca:
|
53 |
+
dimensionality_reduced_embeddings_pca = self.pca.fit_transform(embeddings_as_array)
|
54 |
+
self._plot_embeddings(projected_data=dimensionality_reduced_embeddings_pca,
|
55 |
+
labels=label_list,
|
56 |
+
title=title_of_plot + " PCA",
|
57 |
+
save_file_path=save_file_path,
|
58 |
+
legend=legend)
|
59 |
+
|
60 |
+
def _plot_embeddings(self, projected_data, labels, title, save_file_path, legend):
|
61 |
+
colors = cm.gist_rainbow(numpy.linspace(0, 1, len(set(labels))))
|
62 |
+
label_to_color = dict()
|
63 |
+
for index, label in enumerate(list(set(labels))):
|
64 |
+
label_to_color[label] = colors[index]
|
65 |
+
|
66 |
+
labels_to_points_x = dict()
|
67 |
+
labels_to_points_y = dict()
|
68 |
+
for label in labels:
|
69 |
+
labels_to_points_x[label] = list()
|
70 |
+
labels_to_points_y[label] = list()
|
71 |
+
for index, label in enumerate(labels):
|
72 |
+
labels_to_points_x[label].append(projected_data[index][0])
|
73 |
+
labels_to_points_y[label].append(projected_data[index][1])
|
74 |
+
|
75 |
+
fig, ax = plt.subplots()
|
76 |
+
for label in set(labels):
|
77 |
+
x = numpy.array(labels_to_points_x[label])
|
78 |
+
y = numpy.array(labels_to_points_y[label])
|
79 |
+
ax.scatter(x=x,
|
80 |
+
y=y,
|
81 |
+
c=label_to_color[label],
|
82 |
+
label=label,
|
83 |
+
alpha=0.9)
|
84 |
+
if legend:
|
85 |
+
ax.legend()
|
86 |
+
fig.tight_layout()
|
87 |
+
ax.axis('off')
|
88 |
+
fig.subplots_adjust(top=0.9, bottom=0.0, right=1.0, left=0.0)
|
89 |
+
ax.set_title(title)
|
90 |
+
if save_file_path is not None:
|
91 |
+
plt.savefig(save_file_path)
|
92 |
+
else:
|
93 |
+
plt.show()
|
94 |
+
plt.close()
|
IMSToucan/Utility/__init__.py
ADDED
File without changes
|
IMSToucan/Utility/utils.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Taken from ESPNet, modified by Florian Lux
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
from abc import ABC
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
def cumsum_durations(durations):
|
12 |
+
out = [0]
|
13 |
+
for duration in durations:
|
14 |
+
out.append(duration + out[-1])
|
15 |
+
centers = list()
|
16 |
+
for index, _ in enumerate(out):
|
17 |
+
if index + 1 < len(out):
|
18 |
+
centers.append((out[index] + out[index + 1]) / 2)
|
19 |
+
return out, centers
|
20 |
+
|
21 |
+
|
22 |
+
def delete_old_checkpoints(checkpoint_dir, keep=5):
|
23 |
+
checkpoint_list = list()
|
24 |
+
for el in os.listdir(checkpoint_dir):
|
25 |
+
if el.endswith(".pt") and el != "best.pt":
|
26 |
+
checkpoint_list.append(int(el.split(".")[0].split("_")[1]))
|
27 |
+
if len(checkpoint_list) <= keep:
|
28 |
+
return
|
29 |
+
else:
|
30 |
+
checkpoint_list.sort(reverse=False)
|
31 |
+
checkpoints_to_delete = [os.path.join(checkpoint_dir, "checkpoint_{}.pt".format(step)) for step in checkpoint_list[:-keep]]
|
32 |
+
for old_checkpoint in checkpoints_to_delete:
|
33 |
+
os.remove(os.path.join(old_checkpoint))
|
34 |
+
|
35 |
+
|
36 |
+
def get_most_recent_checkpoint(checkpoint_dir, verbose=True):
|
37 |
+
checkpoint_list = list()
|
38 |
+
for el in os.listdir(checkpoint_dir):
|
39 |
+
if el.endswith(".pt") and el != "best.pt":
|
40 |
+
checkpoint_list.append(int(el.split(".")[0].split("_")[1]))
|
41 |
+
if len(checkpoint_list) == 0:
|
42 |
+
print("No previous checkpoints found, cannot reload.")
|
43 |
+
return None
|
44 |
+
checkpoint_list.sort(reverse=True)
|
45 |
+
if verbose:
|
46 |
+
print("Reloading checkpoint_{}.pt".format(checkpoint_list[0]))
|
47 |
+
return os.path.join(checkpoint_dir, "checkpoint_{}.pt".format(checkpoint_list[0]))
|
48 |
+
|
49 |
+
|
50 |
+
def make_pad_mask(lengths, xs=None, length_dim=-1, device=None):
|
51 |
+
"""
|
52 |
+
Make mask tensor containing indices of padded part.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
lengths (LongTensor or List): Batch of lengths (B,).
|
56 |
+
xs (Tensor, optional): The reference tensor.
|
57 |
+
If set, masks will be the same shape as this tensor.
|
58 |
+
length_dim (int, optional): Dimension indicator of the above tensor.
|
59 |
+
See the example.
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
Tensor: Mask tensor containing indices of padded part.
|
63 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
64 |
+
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
|
65 |
+
|
66 |
+
"""
|
67 |
+
if length_dim == 0:
|
68 |
+
raise ValueError("length_dim cannot be 0: {}".format(length_dim))
|
69 |
+
|
70 |
+
if not isinstance(lengths, list):
|
71 |
+
lengths = lengths.tolist()
|
72 |
+
bs = int(len(lengths))
|
73 |
+
if xs is None:
|
74 |
+
maxlen = int(max(lengths))
|
75 |
+
else:
|
76 |
+
maxlen = xs.size(length_dim)
|
77 |
+
|
78 |
+
if device is not None:
|
79 |
+
seq_range = torch.arange(0, maxlen, dtype=torch.int64, device=device)
|
80 |
+
else:
|
81 |
+
seq_range = torch.arange(0, maxlen, dtype=torch.int64)
|
82 |
+
seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
|
83 |
+
seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
|
84 |
+
mask = seq_range_expand >= seq_length_expand
|
85 |
+
|
86 |
+
if xs is not None:
|
87 |
+
assert xs.size(0) == bs, (xs.size(0), bs)
|
88 |
+
|
89 |
+
if length_dim < 0:
|
90 |
+
length_dim = xs.dim() + length_dim
|
91 |
+
# ind = (:, None, ..., None, :, , None, ..., None)
|
92 |
+
ind = tuple(slice(None) if i in (0, length_dim) else None for i in range(xs.dim()))
|
93 |
+
mask = mask[ind].expand_as(xs).to(xs.device)
|
94 |
+
return mask
|
95 |
+
|
96 |
+
|
97 |
+
def make_non_pad_mask(lengths, xs=None, length_dim=-1, device=None):
|
98 |
+
"""
|
99 |
+
Make mask tensor containing indices of non-padded part.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
lengths (LongTensor or List): Batch of lengths (B,).
|
103 |
+
xs (Tensor, optional): The reference tensor.
|
104 |
+
If set, masks will be the same shape as this tensor.
|
105 |
+
length_dim (int, optional): Dimension indicator of the above tensor.
|
106 |
+
See the example.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
ByteTensor: mask tensor containing indices of padded part.
|
110 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
111 |
+
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
|
112 |
+
|
113 |
+
"""
|
114 |
+
return ~make_pad_mask(lengths, xs, length_dim, device=device)
|
115 |
+
|
116 |
+
|
117 |
+
def initialize(model, init):
|
118 |
+
"""
|
119 |
+
Initialize weights of a neural network module.
|
120 |
+
|
121 |
+
Parameters are initialized using the given method or distribution.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
model: Target.
|
125 |
+
init: Method of initialization.
|
126 |
+
"""
|
127 |
+
|
128 |
+
# weight init
|
129 |
+
for p in model.parameters():
|
130 |
+
if p.dim() > 1:
|
131 |
+
if init == "xavier_uniform":
|
132 |
+
torch.nn.init.xavier_uniform_(p.data)
|
133 |
+
elif init == "xavier_normal":
|
134 |
+
torch.nn.init.xavier_normal_(p.data)
|
135 |
+
elif init == "kaiming_uniform":
|
136 |
+
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
137 |
+
elif init == "kaiming_normal":
|
138 |
+
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
139 |
+
else:
|
140 |
+
raise ValueError("Unknown initialization: " + init)
|
141 |
+
# bias init
|
142 |
+
for p in model.parameters():
|
143 |
+
if p.dim() == 1:
|
144 |
+
p.data.zero_()
|
145 |
+
|
146 |
+
# reset some modules with default init
|
147 |
+
for m in model.modules():
|
148 |
+
if isinstance(m, (torch.nn.Embedding, torch.nn.LayerNorm)):
|
149 |
+
m.reset_parameters()
|
150 |
+
|
151 |
+
|
152 |
+
def pad_list(xs, pad_value):
|
153 |
+
"""
|
154 |
+
Perform padding for the list of tensors.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
158 |
+
pad_value (float): Value for padding.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
Tensor: Padded tensor (B, Tmax, `*`).
|
162 |
+
|
163 |
+
"""
|
164 |
+
n_batch = len(xs)
|
165 |
+
max_len = max(x.size(0) for x in xs)
|
166 |
+
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
|
167 |
+
|
168 |
+
for i in range(n_batch):
|
169 |
+
pad[i, : xs[i].size(0)] = xs[i]
|
170 |
+
|
171 |
+
return pad
|
172 |
+
|
173 |
+
|
174 |
+
def subsequent_mask(size, device="cpu", dtype=torch.bool):
|
175 |
+
"""
|
176 |
+
Create mask for subsequent steps (size, size).
|
177 |
+
|
178 |
+
:param int size: size of mask
|
179 |
+
:param str device: "cpu" or "cuda" or torch.Tensor.device
|
180 |
+
:param torch.dtype dtype: result dtype
|
181 |
+
:rtype
|
182 |
+
"""
|
183 |
+
ret = torch.ones(size, size, device=device, dtype=dtype)
|
184 |
+
return torch.tril(ret, out=ret)
|
185 |
+
|
186 |
+
|
187 |
+
class ScorerInterface:
|
188 |
+
"""
|
189 |
+
Scorer interface for beam search.
|
190 |
+
|
191 |
+
The scorer performs scoring of the all tokens in vocabulary.
|
192 |
+
|
193 |
+
Examples:
|
194 |
+
* Search heuristics
|
195 |
+
* :class:`espnet.nets.scorers.length_bonus.LengthBonus`
|
196 |
+
* Decoder networks of the sequence-to-sequence models
|
197 |
+
* :class:`espnet.nets.pytorch_backend.nets.transformer.decoder.Decoder`
|
198 |
+
* :class:`espnet.nets.pytorch_backend.nets.rnn.decoders.Decoder`
|
199 |
+
* Neural language models
|
200 |
+
* :class:`espnet.nets.pytorch_backend.lm.transformer.TransformerLM`
|
201 |
+
* :class:`espnet.nets.pytorch_backend.lm.default.DefaultRNNLM`
|
202 |
+
* :class:`espnet.nets.pytorch_backend.lm.seq_rnn.SequentialRNNLM`
|
203 |
+
|
204 |
+
"""
|
205 |
+
|
206 |
+
def init_state(self, x):
|
207 |
+
"""
|
208 |
+
Get an initial state for decoding (optional).
|
209 |
+
|
210 |
+
Args:
|
211 |
+
x (torch.Tensor): The encoded feature tensor
|
212 |
+
|
213 |
+
Returns: initial state
|
214 |
+
|
215 |
+
"""
|
216 |
+
return None
|
217 |
+
|
218 |
+
def select_state(self, state, i, new_id=None):
|
219 |
+
"""
|
220 |
+
Select state with relative ids in the main beam search.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
state: Decoder state for prefix tokens
|
224 |
+
i (int): Index to select a state in the main beam search
|
225 |
+
new_id (int): New label index to select a state if necessary
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
state: pruned state
|
229 |
+
|
230 |
+
"""
|
231 |
+
return None if state is None else state[i]
|
232 |
+
|
233 |
+
def score(self, y, state, x):
|
234 |
+
"""
|
235 |
+
Score new token (required).
|
236 |
+
|
237 |
+
Args:
|
238 |
+
y (torch.Tensor): 1D torch.int64 prefix tokens.
|
239 |
+
state: Scorer state for prefix tokens
|
240 |
+
x (torch.Tensor): The encoder feature that generates ys.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
tuple[torch.Tensor, Any]: Tuple of
|
244 |
+
scores for next token that has a shape of `(n_vocab)`
|
245 |
+
and next state for ys
|
246 |
+
|
247 |
+
"""
|
248 |
+
raise NotImplementedError
|
249 |
+
|
250 |
+
def final_score(self, state):
|
251 |
+
"""
|
252 |
+
Score eos (optional).
|
253 |
+
|
254 |
+
Args:
|
255 |
+
state: Scorer state for prefix tokens
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
float: final score
|
259 |
+
|
260 |
+
"""
|
261 |
+
return 0.0
|
262 |
+
|
263 |
+
|
264 |
+
class BatchScorerInterface(ScorerInterface, ABC):
|
265 |
+
|
266 |
+
def batch_init_state(self, x):
|
267 |
+
"""
|
268 |
+
Get an initial state for decoding (optional).
|
269 |
+
|
270 |
+
Args:
|
271 |
+
x (torch.Tensor): The encoded feature tensor
|
272 |
+
|
273 |
+
Returns: initial state
|
274 |
+
|
275 |
+
"""
|
276 |
+
return self.init_state(x)
|
277 |
+
|
278 |
+
def batch_score(self, ys, states, xs):
|
279 |
+
"""
|
280 |
+
Score new token batch (required).
|
281 |
+
|
282 |
+
Args:
|
283 |
+
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
|
284 |
+
states (List[Any]): Scorer states for prefix tokens.
|
285 |
+
xs (torch.Tensor):
|
286 |
+
The encoder feature that generates ys (n_batch, xlen, n_feat).
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
tuple[torch.Tensor, List[Any]]: Tuple of
|
290 |
+
batchfied scores for next token with shape of `(n_batch, n_vocab)`
|
291 |
+
and next state list for ys.
|
292 |
+
|
293 |
+
"""
|
294 |
+
scores = list()
|
295 |
+
outstates = list()
|
296 |
+
for i, (y, state, x) in enumerate(zip(ys, states, xs)):
|
297 |
+
score, outstate = self.score(y, state, x)
|
298 |
+
outstates.append(outstate)
|
299 |
+
scores.append(score)
|
300 |
+
scores = torch.cat(scores, 0).view(ys.shape[0], -1)
|
301 |
+
return scores, outstates
|
302 |
+
|
303 |
+
|
304 |
+
def to_device(m, x):
|
305 |
+
"""Send tensor into the device of the module.
|
306 |
+
Args:
|
307 |
+
m (torch.nn.Module): Torch module.
|
308 |
+
x (Tensor): Torch tensor.
|
309 |
+
Returns:
|
310 |
+
Tensor: Torch tensor located in the same place as torch module.
|
311 |
+
"""
|
312 |
+
if isinstance(m, torch.nn.Module):
|
313 |
+
device = next(m.parameters()).device
|
314 |
+
elif isinstance(m, torch.Tensor):
|
315 |
+
device = m.device
|
316 |
+
else:
|
317 |
+
raise TypeError(
|
318 |
+
"Expected torch.nn.Module or torch.tensor, " f"bot got: {type(m)}"
|
319 |
+
)
|
320 |
+
return x.to(device)
|
IMSToucan/requirements.txt
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
appdirs~=1.4.4
|
2 |
+
attrs~=21.2.0
|
3 |
+
audioread~=2.1.9
|
4 |
+
auraloss~=0.2.1
|
5 |
+
certifi~=2021.5.30
|
6 |
+
cffi~=1.14.6
|
7 |
+
charset-normalizer~=2.0.4
|
8 |
+
clldutils~=3.9.0
|
9 |
+
colorama~=0.4.4
|
10 |
+
colorlog~=6.4.1
|
11 |
+
commonmark~=0.9.1
|
12 |
+
csvw~=1.11.0
|
13 |
+
cycler~=0.10.0
|
14 |
+
Cython~=0.29.24
|
15 |
+
decorator~=5.0.9
|
16 |
+
editdistance~=0.5.3
|
17 |
+
emoji~=1.4.2
|
18 |
+
filelock~=3.0.12
|
19 |
+
ftfy~=6.0.3
|
20 |
+
future~=0.18.2
|
21 |
+
gdown~=3.13.0
|
22 |
+
graphviz~=0.17
|
23 |
+
huggingface-hub~=0.0.16
|
24 |
+
HyperPyYAML~=1.0.0
|
25 |
+
idna~=3.2
|
26 |
+
isodate~=0.6.0
|
27 |
+
jiwer~=2.2.1
|
28 |
+
joblib~=1.0.1
|
29 |
+
kiwisolver~=1.3.2
|
30 |
+
librosa~=0.8.1
|
31 |
+
llvmlite~=0.37.0
|
32 |
+
matplotlib~=3.4.3
|
33 |
+
munkres~=1.1.4
|
34 |
+
numba~=0.54.0
|
35 |
+
numpy~=1.20.3
|
36 |
+
packaging~=21.0
|
37 |
+
panphon~=0.19
|
38 |
+
pedalboard~=0.3.11
|
39 |
+
phonemizer~=2.2.2
|
40 |
+
Pillow~=8.3.2
|
41 |
+
pooch~=1.5.1
|
42 |
+
pycparser~=2.20
|
43 |
+
Pygments~=2.10.0
|
44 |
+
pyloudnorm~=0.1.0
|
45 |
+
pyparsing~=2.4.7
|
46 |
+
pysndfx~=0.3.6
|
47 |
+
PySocks~=1.7.1
|
48 |
+
python-dateutil~=2.8.2
|
49 |
+
python-Levenshtein~=0.12.2
|
50 |
+
pyworld~=0.3.0
|
51 |
+
PyYAML~=5.4.1
|
52 |
+
regex~=2021.8.28
|
53 |
+
requests~=2.26.0
|
54 |
+
resampy~=0.2.2
|
55 |
+
rfc3986~=1.5.0
|
56 |
+
rich~=9.10.0
|
57 |
+
ruamel.yaml~=0.17.16
|
58 |
+
ruamel.yaml.clib~=0.2.6
|
59 |
+
scikit-learn~=0.24.2
|
60 |
+
scipy~=1.7.1
|
61 |
+
segments~=2.2.0
|
62 |
+
sentencepiece~=0.1.96
|
63 |
+
six~=1.16.0
|
64 |
+
sklearn~=0.0
|
65 |
+
sounddevice~=0.4.2
|
66 |
+
SoundFile~=0.10.3.post1
|
67 |
+
speechbrain~=0.5.10
|
68 |
+
tabulate~=0.8.9
|
69 |
+
threadpoolctl~=2.2.0
|
70 |
+
torch~=1.10.1
|
71 |
+
torch-complex~=0.2.1
|
72 |
+
torchaudio~=0.10.1
|
73 |
+
torchvision~=0.11.2
|
74 |
+
torchviz~=0.0.2
|
75 |
+
tqdm~=4.62.2
|
76 |
+
typing-extensions~=3.10.0.2
|
77 |
+
unicodecsv~=0.14.1
|
78 |
+
Unidecode~=1.2.0
|
79 |
+
unsilence~=1.0.8
|
80 |
+
uritemplate~=3.0.1
|
81 |
+
urllib3~=1.26.6
|
82 |
+
wcwidth~=0.2.5
|
83 |
+
wincertstore~=0.2
|