Deploying app on hiugginface spaces
Browse files- Dockerfile +25 -0
- LICENSE +21 -0
- Model Training/final-method-using-m2m100.ipynb +1 -0
- __pycache__/translation_model.cpython-312.pyc +0 -0
- app.py +20 -0
- model/.gitattributes +35 -0
- model/README.md +83 -0
- model/added_tokens.json +102 -0
- model/config.json +37 -0
- model/generation_config.json +10 -0
- model/special_tokens_map.json +109 -0
- model/tokenizer_config.json +951 -0
- model/vocab.json +0 -0
- requirements.txt +5 -0
- static/styles.css +99 -0
- templates/index.html +55 -0
- translation_model.py +21 -0
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim-bullseye
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY . /app/
|
6 |
+
|
7 |
+
# Upgrade pip
|
8 |
+
RUN pip install --upgrade pip
|
9 |
+
|
10 |
+
# Install system dependencies for scientific libraries
|
11 |
+
RUN apt-get update && apt-get install -y \
|
12 |
+
build-essential \
|
13 |
+
cmake \
|
14 |
+
libopenblas-dev \
|
15 |
+
liblapack-dev \
|
16 |
+
libjpeg-dev \
|
17 |
+
zlib1g-dev \
|
18 |
+
&& rm -rf /var/lib/apt/lists/*
|
19 |
+
|
20 |
+
# Install Python dependencies
|
21 |
+
RUN pip install torch torchvision numpy scipy pandas matplotlib scikit-learn flask transformers
|
22 |
+
|
23 |
+
EXPOSE 3000
|
24 |
+
|
25 |
+
CMD ["python", "./app.py"]
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Sarvesh Chaudhari
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
Model Training/final-method-using-m2m100.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.10.14","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"kaggle":{"accelerator":"nvidiaTeslaT4","dataSources":[{"sourceId":9585160,"sourceType":"datasetVersion","datasetId":5845201}],"dockerImageVersionId":30786,"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":true}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"from datasets import load_dataset","metadata":{"execution":{"iopub.status.busy":"2024-10-13T03:59:54.293786Z","iopub.execute_input":"2024-10-13T03:59:54.294192Z","iopub.status.idle":"2024-10-13T03:59:56.257624Z","shell.execute_reply.started":"2024-10-13T03:59:54.294138Z","shell.execute_reply":"2024-10-13T03:59:56.256580Z"},"trusted":true},"execution_count":1,"outputs":[]},{"cell_type":"code","source":"!pip install sentencepiece\n!pip install transformers\n!pip install datasets evaluate\n!pip install sacrebleu","metadata":{"execution":{"iopub.status.busy":"2024-10-13T03:59:56.261528Z","iopub.execute_input":"2024-10-13T03:59:56.261989Z","iopub.status.idle":"2024-10-13T04:00:47.093610Z","shell.execute_reply.started":"2024-10-13T03:59:56.261955Z","shell.execute_reply":"2024-10-13T04:00:47.092408Z"},"trusted":true},"execution_count":2,"outputs":[{"name":"stdout","text":"Requirement already satisfied: sentencepiece in /opt/conda/lib/python3.10/site-packages (0.2.0)\nRequirement already satisfied: transformers in /opt/conda/lib/python3.10/site-packages (4.45.1)\nRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from transformers) (3.15.1)\nRequirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /opt/conda/lib/python3.10/site-packages (from transformers) (0.25.1)\nRequirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from transformers) (1.26.4)\nRequirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.10/site-packages (from transformers) (21.3)\nRequirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from transformers) (6.0.2)\nRequirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.10/site-packages (from transformers) (2024.5.15)\nRequirement already satisfied: requests in /opt/conda/lib/python3.10/site-packages (from transformers) (2.32.3)\nRequirement already satisfied: safetensors>=0.4.1 in /opt/conda/lib/python3.10/site-packages (from transformers) (0.4.5)\nRequirement already satisfied: tokenizers<0.21,>=0.20 in /opt/conda/lib/python3.10/site-packages (from transformers) (0.20.0)\nRequirement already satisfied: tqdm>=4.27 in /opt/conda/lib/python3.10/site-packages (from transformers) (4.66.4)\nRequirement already satisfied: fsspec>=2023.5.0 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (2024.6.1)\nRequirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (4.12.2)\nRequirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging>=20.0->transformers) (3.1.2)\nRequirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests->transformers) (3.3.2)\nRequirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests->transformers) (3.7)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests->transformers) (1.26.18)\nRequirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests->transformers) (2024.8.30)\nRequirement already satisfied: datasets in /opt/conda/lib/python3.10/site-packages (3.0.1)\nCollecting evaluate\n Downloading evaluate-0.4.3-py3-none-any.whl.metadata (9.2 kB)\nRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from datasets) (3.15.1)\nRequirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from datasets) (1.26.4)\nRequirement already satisfied: pyarrow>=15.0.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (16.1.0)\nRequirement already satisfied: dill<0.3.9,>=0.3.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (0.3.8)\nRequirement already satisfied: pandas in /opt/conda/lib/python3.10/site-packages (from datasets) (2.2.2)\nRequirement already satisfied: requests>=2.32.2 in /opt/conda/lib/python3.10/site-packages (from datasets) (2.32.3)\nRequirement already satisfied: tqdm>=4.66.3 in /opt/conda/lib/python3.10/site-packages (from datasets) (4.66.4)\nRequirement already satisfied: xxhash in /opt/conda/lib/python3.10/site-packages (from datasets) (3.4.1)\nRequirement already satisfied: multiprocess in /opt/conda/lib/python3.10/site-packages (from datasets) (0.70.16)\nRequirement already satisfied: fsspec<=2024.6.1,>=2023.1.0 in /opt/conda/lib/python3.10/site-packages (from fsspec[http]<=2024.6.1,>=2023.1.0->datasets) (2024.6.1)\nRequirement already satisfied: aiohttp in /opt/conda/lib/python3.10/site-packages (from datasets) (3.9.5)\nRequirement already satisfied: huggingface-hub>=0.22.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (0.25.1)\nRequirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from datasets) (21.3)\nRequirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from datasets) (6.0.2)\nRequirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (1.3.1)\nRequirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (23.2.0)\nRequirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (1.4.1)\nRequirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (6.0.5)\nRequirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (1.9.4)\nRequirement already satisfied: async-timeout<5.0,>=4.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (4.0.3)\nRequirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.22.0->datasets) (4.12.2)\nRequirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging->datasets) (3.1.2)\nRequirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets) (3.3.2)\nRequirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets) (3.7)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets) (1.26.18)\nRequirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets) (2024.8.30)\nRequirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets) (2.9.0.post0)\nRequirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets) (2024.1)\nRequirement already satisfied: tzdata>=2022.7 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets) (2024.1)\nRequirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\nDownloading evaluate-0.4.3-py3-none-any.whl (84 kB)\n\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.0/84.0 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n\u001b[?25hInstalling collected packages: evaluate\nSuccessfully installed evaluate-0.4.3\nCollecting sacrebleu\n Downloading sacrebleu-2.4.3-py3-none-any.whl.metadata (51 kB)\n\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.8/51.8 kB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n\u001b[?25hCollecting portalocker (from sacrebleu)\n Downloading portalocker-2.10.1-py3-none-any.whl.metadata (8.5 kB)\nRequirement already satisfied: regex in /opt/conda/lib/python3.10/site-packages (from sacrebleu) (2024.5.15)\nRequirement already satisfied: tabulate>=0.8.9 in /opt/conda/lib/python3.10/site-packages (from sacrebleu) (0.9.0)\nRequirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from sacrebleu) (1.26.4)\nRequirement already satisfied: colorama in /opt/conda/lib/python3.10/site-packages (from sacrebleu) (0.4.6)\nRequirement already satisfied: lxml in /opt/conda/lib/python3.10/site-packages (from sacrebleu) (5.3.0)\nDownloading sacrebleu-2.4.3-py3-none-any.whl (103 kB)\n\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.0/104.0 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n\u001b[?25hDownloading portalocker-2.10.1-py3-none-any.whl (18 kB)\nInstalling collected packages: portalocker, sacrebleu\nSuccessfully installed portalocker-2.10.1 sacrebleu-2.4.3\n","output_type":"stream"}]},{"cell_type":"code","source":"!pip install wandb -qqq\nimport wandb\nwandb.login()","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:00:47.095135Z","iopub.execute_input":"2024-10-13T04:00:47.095477Z","iopub.status.idle":"2024-10-13T04:01:19.743885Z","shell.execute_reply.started":"2024-10-13T04:00:47.095441Z","shell.execute_reply":"2024-10-13T04:01:19.742777Z"},"trusted":true},"execution_count":3,"outputs":[{"name":"stderr","text":"\u001b[34m\u001b[1mwandb\u001b[0m: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.\n\u001b[34m\u001b[1mwandb\u001b[0m: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)\n\u001b[34m\u001b[1mwandb\u001b[0m: You can find your API key in your browser here: https://wandb.ai/authorize\n\u001b[34m\u001b[1mwandb\u001b[0m: Paste an API key from your profile and hit enter, or press ctrl+c to quit:","output_type":"stream"},{"output_type":"stream","name":"stdin","text":" ········································\n"},{"name":"stderr","text":"\u001b[34m\u001b[1mwandb\u001b[0m: Appending key for api.wandb.ai to your netrc file: /root/.netrc\n","output_type":"stream"},{"execution_count":3,"output_type":"execute_result","data":{"text/plain":"True"},"metadata":{}}]},{"cell_type":"code","source":"# Initialize wandb.run first\nwandb.init()\n\n# If cell outputs wandb.run, you'll see live graphs\nwandb.run","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:01:19.746153Z","iopub.execute_input":"2024-10-13T04:01:19.746742Z","iopub.status.idle":"2024-10-13T04:01:23.136029Z","shell.execute_reply.started":"2024-10-13T04:01:19.746702Z","shell.execute_reply":"2024-10-13T04:01:23.135072Z"},"trusted":true},"execution_count":4,"outputs":[{"name":"stderr","text":"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33msarch7040\u001b[0m (\u001b[33msarch7040-\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011112782366666983, max=1.0…","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"3c66afed2b82401bbe5179218d4ef737"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"Tracking run with wandb version 0.18.3"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"Run data is saved locally in <code>/kaggle/working/wandb/run-20241013_040119-uj3tsimu</code>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"Syncing run <strong><a href='https://wandb.ai/sarch7040-/uncategorized/runs/uj3tsimu' target=\"_blank\">grateful-snow-4</a></strong> to <a href='https://wandb.ai/sarch7040-/uncategorized' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":" View project at <a href='https://wandb.ai/sarch7040-/uncategorized' target=\"_blank\">https://wandb.ai/sarch7040-/uncategorized</a>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":" View run at <a href='https://wandb.ai/sarch7040-/uncategorized/runs/uj3tsimu' target=\"_blank\">https://wandb.ai/sarch7040-/uncategorized/runs/uj3tsimu</a>"},"metadata":{}},{"execution_count":4,"output_type":"execute_result","data":{"text/html":"<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/sarch7040-/uncategorized/runs/uj3tsimu?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>","text/plain":"<wandb.sdk.wandb_run.Run at 0x7d48c92cd0c0>"},"metadata":{}}]},{"cell_type":"code","source":"from transformers import AutoTokenizer, M2M100ForConditionalGeneration,Seq2SeqTrainingArguments, Seq2SeqTrainer, DataCollatorForSeq2Seq,pipeline\nfrom huggingface_hub import notebook_login\nfrom datasets import load_dataset\nimport evaluate\nimport numpy as np","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:01:23.137721Z","iopub.execute_input":"2024-10-13T04:01:23.138493Z","iopub.status.idle":"2024-10-13T04:01:43.683149Z","shell.execute_reply.started":"2024-10-13T04:01:23.138456Z","shell.execute_reply":"2024-10-13T04:01:43.682181Z"},"trusted":true},"execution_count":5,"outputs":[]},{"cell_type":"code","source":"model = M2M100ForConditionalGeneration.from_pretrained(\"facebook/m2m100_418M\")\ntokenizer = AutoTokenizer.from_pretrained(\"facebook/m2m100_418M\")","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:01:43.684472Z","iopub.execute_input":"2024-10-13T04:01:43.685094Z","iopub.status.idle":"2024-10-13T04:01:55.228054Z","shell.execute_reply.started":"2024-10-13T04:01:43.685058Z","shell.execute_reply":"2024-10-13T04:01:55.227221Z"},"trusted":true},"execution_count":6,"outputs":[{"output_type":"display_data","data":{"text/plain":"config.json: 0%| | 0.00/908 [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"36f8129324bf4c3daf16a886e2e0118e"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"pytorch_model.bin: 0%| | 0.00/1.94G [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"6096c80a15404ae5bc4ad9b5a993a73e"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"generation_config.json: 0%| | 0.00/233 [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"1933610ef18145efb94d7f8a43d7a367"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"tokenizer_config.json: 0%| | 0.00/298 [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"dea7f7584c794371ad5ddb8e746286e1"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"vocab.json: 0%| | 0.00/3.71M [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"61d8b86b22664b2e95628c17914c15d4"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"sentencepiece.bpe.model: 0%| | 0.00/2.42M [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"dc57afa9ee304cb89b17bddc7c22ae6a"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"special_tokens_map.json: 0%| | 0.00/1.14k [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"f712c792c5fb486dbb3dc38759837e2f"}},"metadata":{}},{"name":"stderr","text":"/opt/conda/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1617: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be deprecated in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n warnings.warn(\n","output_type":"stream"}]},{"cell_type":"code","source":"!pip install huggingface_hub\n\nfrom huggingface_hub import login\n\n# Prompt for your Hugging Face token\ntoken = \"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\"\n\n# Log in to Hugging Face\nlogin(token)\n","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:29.639557Z","iopub.execute_input":"2024-10-13T04:02:29.639955Z","iopub.status.idle":"2024-10-13T04:02:41.765380Z","shell.execute_reply.started":"2024-10-13T04:02:29.639917Z","shell.execute_reply":"2024-10-13T04:02:41.764308Z"},"trusted":true},"execution_count":8,"outputs":[{"name":"stdout","text":"Requirement already satisfied: huggingface_hub in /opt/conda/lib/python3.10/site-packages (0.25.1)\nRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (3.15.1)\nRequirement already satisfied: fsspec>=2023.5.0 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (2024.6.1)\nRequirement already satisfied: packaging>=20.9 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (21.3)\nRequirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (6.0.2)\nRequirement already satisfied: requests in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (2.32.3)\nRequirement already satisfied: tqdm>=4.42.1 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (4.66.4)\nRequirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (4.12.2)\nRequirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging>=20.9->huggingface_hub) (3.1.2)\nRequirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface_hub) (3.3.2)\nRequirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface_hub) (3.7)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface_hub) (1.26.18)\nRequirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface_hub) (2024.8.30)\nThe token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\nToken is valid (permission: fineGrained).\nYour token has been saved to /root/.cache/huggingface/token\nLogin successful\n","output_type":"stream"}]},{"cell_type":"code","source":"from datasets import load_dataset\nimport unicodedata\nfrom transformers import AutoTokenizer, AutoModelForSeq2SeqLM\n\n# Load dataset\ndataset = load_dataset(\"csv\", data_files=\"/kaggle/input/praendataset/prakrit_translation.csv\")\n\n# Preprocessing function\ndef preprocess_function(examples):\n # Helper function to remove punctuation using Unicode categories\n def remove_punctuation(text):\n return ''.join(\n char for char in text\n if not unicodedata.category(char).startswith('P')\n )\n \n # Remove punctuation from English and Prakrit sentences\n examples['english'] = [remove_punctuation(sentence) for sentence in examples['english']]\n examples['prakrit'] = [remove_punctuation(sentence) for sentence in examples['prakrit']]\n \n return examples\n\n# Apply preprocessing\ndataset = dataset.map(preprocess_function, batched=True)\n\n\n# Tokenization function\nmax_length = 128\ndef tokenization(examples):\n inputs = examples[\"prakrit\"]\n targets = examples[\"english\"]\n \n # Tokenize inputs and targets\n model_inputs = tokenizer(inputs, max_length=max_length, truncation=True, padding=\"max_length\")\n labels = tokenizer(targets, max_length=max_length, truncation=True, padding=\"max_length\")\n \n # Set labels in the tokenized inputs\n model_inputs[\"labels\"] = labels[\"input_ids\"]\n \n return model_inputs\n\n# Apply tokenization to the dataset\ntokenized_dataset = dataset.map(tokenization, batched=True)\n\n# Display some tokenized data\n","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:41.767501Z","iopub.execute_input":"2024-10-13T04:02:41.767865Z","iopub.status.idle":"2024-10-13T04:02:45.646354Z","shell.execute_reply.started":"2024-10-13T04:02:41.767825Z","shell.execute_reply":"2024-10-13T04:02:45.645429Z"},"trusted":true},"execution_count":9,"outputs":[{"output_type":"display_data","data":{"text/plain":"Generating train split: 0 examples [00:00, ? examples/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"a9dc86182afd45f7a3c2009cddaea0ca"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Map: 0%| | 0/1474 [00:00<?, ? examples/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"ad976916753f4d8a88b85b70ecdee2f6"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Map: 0%| | 0/1474 [00:00<?, ? examples/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"3df6b5cb800d4af09bdce7ce7673c939"}},"metadata":{}}]},{"cell_type":"code","source":"tokenized_dataset","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:45.648411Z","iopub.execute_input":"2024-10-13T04:02:45.649091Z","iopub.status.idle":"2024-10-13T04:02:45.656029Z","shell.execute_reply.started":"2024-10-13T04:02:45.649033Z","shell.execute_reply":"2024-10-13T04:02:45.655083Z"},"trusted":true},"execution_count":10,"outputs":[{"execution_count":10,"output_type":"execute_result","data":{"text/plain":"DatasetDict({\n train: Dataset({\n features: ['english', 'prakrit', 'input_ids', 'attention_mask', 'labels'],\n num_rows: 1474\n })\n})"},"metadata":{}}]},{"cell_type":"code","source":"!pip install --upgrade evaluate\n","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:45.657315Z","iopub.execute_input":"2024-10-13T04:02:45.657702Z","iopub.status.idle":"2024-10-13T04:02:58.549969Z","shell.execute_reply.started":"2024-10-13T04:02:45.657657Z","shell.execute_reply":"2024-10-13T04:02:58.548823Z"},"trusted":true},"execution_count":11,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n pid, fd = os.forkpty()\n","output_type":"stream"},{"name":"stdout","text":"Requirement already satisfied: evaluate in /opt/conda/lib/python3.10/site-packages (0.4.3)\nRequirement already satisfied: datasets>=2.0.0 in /opt/conda/lib/python3.10/site-packages (from evaluate) (3.0.1)\nRequirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from evaluate) (1.26.4)\nRequirement already satisfied: dill in /opt/conda/lib/python3.10/site-packages (from evaluate) (0.3.8)\nRequirement already satisfied: pandas in /opt/conda/lib/python3.10/site-packages (from evaluate) (2.2.2)\nRequirement already satisfied: requests>=2.19.0 in /opt/conda/lib/python3.10/site-packages (from evaluate) (2.32.3)\nRequirement already satisfied: tqdm>=4.62.1 in /opt/conda/lib/python3.10/site-packages (from evaluate) (4.66.4)\nRequirement already satisfied: xxhash in /opt/conda/lib/python3.10/site-packages (from evaluate) (3.4.1)\nRequirement already satisfied: multiprocess in /opt/conda/lib/python3.10/site-packages (from evaluate) (0.70.16)\nRequirement already satisfied: fsspec>=2021.05.0 in /opt/conda/lib/python3.10/site-packages (from fsspec[http]>=2021.05.0->evaluate) (2024.6.1)\nRequirement already satisfied: huggingface-hub>=0.7.0 in /opt/conda/lib/python3.10/site-packages (from evaluate) (0.25.1)\nRequirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from evaluate) (21.3)\nRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from datasets>=2.0.0->evaluate) (3.15.1)\nRequirement already satisfied: pyarrow>=15.0.0 in /opt/conda/lib/python3.10/site-packages (from datasets>=2.0.0->evaluate) (16.1.0)\nRequirement already satisfied: aiohttp in /opt/conda/lib/python3.10/site-packages (from datasets>=2.0.0->evaluate) (3.9.5)\nRequirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from datasets>=2.0.0->evaluate) (6.0.2)\nRequirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.7.0->evaluate) (4.12.2)\nRequirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging->evaluate) (3.1.2)\nRequirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->evaluate) (3.3.2)\nRequirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->evaluate) (3.7)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->evaluate) (1.26.18)\nRequirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->evaluate) (2024.8.30)\nRequirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.10/site-packages (from pandas->evaluate) (2.9.0.post0)\nRequirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas->evaluate) (2024.1)\nRequirement already satisfied: tzdata>=2022.7 in /opt/conda/lib/python3.10/site-packages (from pandas->evaluate) (2024.1)\nRequirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.3.1)\nRequirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.0.0->evaluate) (23.2.0)\nRequirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.4.1)\nRequirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.0.0->evaluate) (6.0.5)\nRequirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.9.4)\nRequirement already satisfied: async-timeout<5.0,>=4.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.0.0->evaluate) (4.0.3)\nRequirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas->evaluate) (1.16.0)\n","output_type":"stream"}]},{"cell_type":"code","source":"from transformers import AutoTokenizer, M2M100ForConditionalGeneration,Seq2SeqTrainingArguments, Seq2SeqTrainer, DataCollatorForSeq2Seq,pipeline\nfrom huggingface_hub import notebook_login\nfrom datasets import load_dataset\nimport evaluate\nimport numpy as np","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:58.552639Z","iopub.execute_input":"2024-10-13T04:02:58.552992Z","iopub.status.idle":"2024-10-13T04:02:58.559634Z","shell.execute_reply.started":"2024-10-13T04:02:58.552953Z","shell.execute_reply":"2024-10-13T04:02:58.558454Z"},"trusted":true},"execution_count":12,"outputs":[]},{"cell_type":"code","source":"model = M2M100ForConditionalGeneration.from_pretrained(\"facebook/m2m100_418M\")\ntokenizer = AutoTokenizer.from_pretrained(\"facebook/m2m100_418M\")","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:58.560923Z","iopub.execute_input":"2024-10-13T04:02:58.561376Z","iopub.status.idle":"2024-10-13T04:02:59.695353Z","shell.execute_reply.started":"2024-10-13T04:02:58.561325Z","shell.execute_reply":"2024-10-13T04:02:59.694505Z"},"trusted":true},"execution_count":13,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1617: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be deprecated in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n warnings.warn(\n","output_type":"stream"}]},{"cell_type":"code","source":"from transformers import DataCollatorForSeq2Seq\n\ndata_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:59.696748Z","iopub.execute_input":"2024-10-13T04:02:59.697199Z","iopub.status.idle":"2024-10-13T04:02:59.703602Z","shell.execute_reply.started":"2024-10-13T04:02:59.697150Z","shell.execute_reply":"2024-10-13T04:02:59.702530Z"},"trusted":true},"execution_count":14,"outputs":[]},{"cell_type":"code","source":"# Perform train-test split with 20% of the data as the test set\ntokenized_dataset = tokenized_dataset[\"train\"].train_test_split(test_size=0.2)\n\n# Check the split\ntokenized_dataset\n","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:59.704774Z","iopub.execute_input":"2024-10-13T04:02:59.705095Z","iopub.status.idle":"2024-10-13T04:02:59.730080Z","shell.execute_reply.started":"2024-10-13T04:02:59.705062Z","shell.execute_reply":"2024-10-13T04:02:59.729251Z"},"trusted":true},"execution_count":15,"outputs":[{"execution_count":15,"output_type":"execute_result","data":{"text/plain":"DatasetDict({\n train: Dataset({\n features: ['english', 'prakrit', 'input_ids', 'attention_mask', 'labels'],\n num_rows: 1179\n })\n test: Dataset({\n features: ['english', 'prakrit', 'input_ids', 'attention_mask', 'labels'],\n num_rows: 295\n })\n})"},"metadata":{}}]},{"cell_type":"code","source":"!pip install --upgrade nltk\n","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:02:59.731136Z","iopub.execute_input":"2024-10-13T04:02:59.731423Z","iopub.status.idle":"2024-10-13T04:03:14.021271Z","shell.execute_reply.started":"2024-10-13T04:02:59.731392Z","shell.execute_reply":"2024-10-13T04:03:14.020343Z"},"trusted":true},"execution_count":16,"outputs":[{"name":"stdout","text":"Requirement already satisfied: nltk in /opt/conda/lib/python3.10/site-packages (3.2.4)\nCollecting nltk\n Downloading nltk-3.9.1-py3-none-any.whl.metadata (2.9 kB)\nRequirement already satisfied: click in /opt/conda/lib/python3.10/site-packages (from nltk) (8.1.7)\nRequirement already satisfied: joblib in /opt/conda/lib/python3.10/site-packages (from nltk) (1.4.2)\nRequirement already satisfied: regex>=2021.8.3 in /opt/conda/lib/python3.10/site-packages (from nltk) (2024.5.15)\nRequirement already satisfied: tqdm in /opt/conda/lib/python3.10/site-packages (from nltk) (4.66.4)\nDownloading nltk-3.9.1-py3-none-any.whl (1.5 MB)\n\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m16.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m0:01\u001b[0m\n\u001b[?25hInstalling collected packages: nltk\n Attempting uninstall: nltk\n Found existing installation: nltk 3.2.4\n Uninstalling nltk-3.2.4:\n Successfully uninstalled nltk-3.2.4\n\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\npreprocessing 0.1.13 requires nltk==3.2.4, but you have nltk 3.9.1 which is incompatible.\u001b[0m\u001b[31m\n\u001b[0mSuccessfully installed nltk-3.9.1\n","output_type":"stream"}]},{"cell_type":"code","source":"import nltk\nimport evaluate\n\n# Download required NLTK datasets\nnltk.download('wordnet')\nnltk.download('omw-1.4')\n\n# Load metrics\nbleu_metric = evaluate.load(\"sacrebleu\")\nmeteor_metric = evaluate.load(\"meteor\")","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:03:14.022706Z","iopub.execute_input":"2024-10-13T04:03:14.023036Z","iopub.status.idle":"2024-10-13T04:03:16.255060Z","shell.execute_reply.started":"2024-10-13T04:03:14.022994Z","shell.execute_reply":"2024-10-13T04:03:16.254163Z"},"trusted":true},"execution_count":17,"outputs":[{"name":"stderr","text":"[nltk_data] Downloading package wordnet to /usr/share/nltk_data...\n[nltk_data] Package wordnet is already up-to-date!\n[nltk_data] Downloading package omw-1.4 to /usr/share/nltk_data...\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"Downloading builder script: 0%| | 0.00/8.15k [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"96c43d90a14d4f8b9c1566be3b7c67bd"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Downloading builder script: 0%| | 0.00/7.02k [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"cb64ff1907ba40c19d26f187e36135b8"}},"metadata":{}},{"name":"stderr","text":"[nltk_data] Downloading package wordnet to /usr/share/nltk_data...\n[nltk_data] Package wordnet is already up-to-date!\n[nltk_data] Downloading package punkt_tab to /usr/share/nltk_data...\n[nltk_data] Unzipping tokenizers/punkt_tab.zip.\n[nltk_data] Downloading package omw-1.4 to /usr/share/nltk_data...\n[nltk_data] Package omw-1.4 is already up-to-date!\n","output_type":"stream"}]},{"cell_type":"code","source":"def postprocess_text(preds, labels):\n preds = [pred.strip() for pred in preds]\n labels = [[label.strip()] for label in labels]\n\n return preds, labels\n\n\ndef compute_metrics(eval_preds):\n preds, labels = eval_preds\n if isinstance(preds, tuple):\n preds = preds[0]\n decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)\n\n labels = np.where(labels != -100, labels, tokenizer.pad_token_id)\n decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n\n # Postprocess the text (strip extra spaces)\n decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)\n\n # Compute BLEU score\n bleu_result = bleu_metric.compute(predictions=decoded_preds, references=decoded_labels)\n\n # Compute METEOR score\n meteor_result = meteor_metric.compute(predictions=decoded_preds, references=decoded_labels)\n\n # Compute generation lengths\n prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]\n\n # Combine the results\n result = {'bleu': bleu_result['score'], 'meteor': meteor_result['meteor']}\n result[\"gen_len\"] = np.mean(prediction_lens)\n\n # Round results to 4 decimal places\n result = {k: round(v, 4) for k, v in result.items()}\n \n return result\n","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:03:16.258223Z","iopub.execute_input":"2024-10-13T04:03:16.258893Z","iopub.status.idle":"2024-10-13T04:03:16.271170Z","shell.execute_reply.started":"2024-10-13T04:03:16.258856Z","shell.execute_reply":"2024-10-13T04:03:16.269904Z"},"trusted":true},"execution_count":18,"outputs":[]},{"cell_type":"code","source":"from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:03:16.272826Z","iopub.execute_input":"2024-10-13T04:03:16.273442Z","iopub.status.idle":"2024-10-13T04:03:16.285551Z","shell.execute_reply.started":"2024-10-13T04:03:16.273387Z","shell.execute_reply":"2024-10-13T04:03:16.284474Z"},"trusted":true},"execution_count":19,"outputs":[]},{"cell_type":"code","source":"training_args = Seq2SeqTrainingArguments(\n output_dir=\"M2M101\",\n evaluation_strategy=\"epoch\",\n learning_rate=1e-5,\n per_device_train_batch_size=8,\n per_device_eval_batch_size=8,\n weight_decay=0.01,\n save_total_limit=3,\n num_train_epochs=20,\n predict_with_generate=True,\n fp16=True,\n push_to_hub=True,\n)\n\ntrainer = Seq2SeqTrainer(\n model=model,\n args=training_args,\n train_dataset=tokenized_dataset[\"train\"],\n eval_dataset=tokenized_dataset[\"test\"],\n tokenizer=tokenizer,\n data_collator=data_collator,\n compute_metrics=compute_metrics,\n)\n\n# for starting the training of model\ntrainer.train()","metadata":{"execution":{"iopub.status.busy":"2024-10-13T04:03:16.286865Z","iopub.execute_input":"2024-10-13T04:03:16.287267Z","iopub.status.idle":"2024-10-13T05:36:34.581097Z","shell.execute_reply.started":"2024-10-13T04:03:16.287223Z","shell.execute_reply":"2024-10-13T05:36:34.580024Z"},"trusted":true},"execution_count":20,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.10/site-packages/transformers/training_args.py:1545: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n warnings.warn(\n/opt/conda/lib/python3.10/site-packages/accelerate/accelerator.py:494: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.\n self.scaler = torch.cuda.amp.GradScaler(**kwargs)\n\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.\n/opt/conda/lib/python3.10/site-packages/torch/nn/parallel/parallel_apply.py:79: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):\n/opt/conda/lib/python3.10/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n warnings.warn('Was asked to gather along dimension 0, but all '\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"\n <div>\n \n <progress value='1480' max='1480' style='width:300px; height:20px; vertical-align: middle;'></progress>\n [1480/1480 1:33:13, Epoch 20/20]\n </div>\n <table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: left;\">\n <th>Epoch</th>\n <th>Training Loss</th>\n <th>Validation Loss</th>\n <th>Bleu</th>\n <th>Meteor</th>\n <th>Gen Len</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <td>1</td>\n <td>No log</td>\n <td>5.826086</td>\n <td>1.178600</td>\n <td>0.199700</td>\n <td>36.383100</td>\n </tr>\n <tr>\n <td>2</td>\n <td>No log</td>\n <td>4.616993</td>\n <td>2.648000</td>\n <td>0.265700</td>\n <td>37.606800</td>\n </tr>\n <tr>\n <td>3</td>\n <td>No log</td>\n <td>3.512793</td>\n <td>5.706900</td>\n <td>0.321700</td>\n <td>32.216900</td>\n </tr>\n <tr>\n <td>4</td>\n <td>No log</td>\n <td>2.528102</td>\n <td>6.313400</td>\n <td>0.354700</td>\n <td>31.857600</td>\n </tr>\n <tr>\n <td>5</td>\n <td>No log</td>\n <td>1.717724</td>\n <td>8.503600</td>\n <td>0.380000</td>\n <td>29.972900</td>\n </tr>\n <tr>\n <td>6</td>\n <td>No log</td>\n <td>1.166630</td>\n <td>10.116900</td>\n <td>0.392500</td>\n <td>28.067800</td>\n </tr>\n <tr>\n <td>7</td>\n <td>3.564100</td>\n <td>0.870194</td>\n <td>10.420700</td>\n <td>0.424600</td>\n <td>31.105100</td>\n </tr>\n <tr>\n <td>8</td>\n <td>3.564100</td>\n <td>0.737626</td>\n <td>12.615300</td>\n <td>0.431000</td>\n <td>28.633900</td>\n </tr>\n <tr>\n <td>9</td>\n <td>3.564100</td>\n <td>0.690092</td>\n <td>13.296600</td>\n <td>0.450300</td>\n <td>29.237300</td>\n </tr>\n <tr>\n <td>10</td>\n <td>3.564100</td>\n <td>0.671265</td>\n <td>11.977200</td>\n <td>0.439600</td>\n <td>30.566100</td>\n </tr>\n <tr>\n <td>11</td>\n <td>3.564100</td>\n <td>0.665060</td>\n <td>14.043600</td>\n <td>0.450600</td>\n <td>30.200000</td>\n </tr>\n <tr>\n <td>12</td>\n <td>3.564100</td>\n <td>0.667843</td>\n <td>13.263200</td>\n <td>0.451400</td>\n <td>31.054200</td>\n </tr>\n <tr>\n <td>13</td>\n <td>3.564100</td>\n <td>0.667750</td>\n <td>14.092400</td>\n <td>0.456300</td>\n <td>29.278000</td>\n </tr>\n <tr>\n <td>14</td>\n <td>0.512100</td>\n <td>0.669289</td>\n <td>14.746000</td>\n <td>0.465100</td>\n <td>28.406800</td>\n </tr>\n <tr>\n <td>15</td>\n <td>0.512100</td>\n <td>0.669845</td>\n <td>14.927800</td>\n <td>0.467700</td>\n <td>28.515300</td>\n </tr>\n <tr>\n <td>16</td>\n <td>0.512100</td>\n <td>0.670038</td>\n <td>14.743100</td>\n <td>0.467400</td>\n <td>28.928800</td>\n </tr>\n <tr>\n <td>17</td>\n <td>0.512100</td>\n <td>0.674381</td>\n <td>15.293400</td>\n <td>0.470100</td>\n <td>28.867800</td>\n </tr>\n <tr>\n <td>18</td>\n <td>0.512100</td>\n <td>0.674102</td>\n <td>15.677600</td>\n <td>0.471200</td>\n <td>28.349200</td>\n </tr>\n <tr>\n <td>19</td>\n <td>0.512100</td>\n <td>0.677232</td>\n <td>14.942000</td>\n <td>0.470700</td>\n <td>28.969500</td>\n </tr>\n <tr>\n <td>20</td>\n <td>0.512100</td>\n <td>0.676572</td>\n <td>15.341600</td>\n <td>0.472300</td>\n <td>28.027100</td>\n </tr>\n </tbody>\n</table><p>"},"metadata":{}},{"name":"stderr","text":"/opt/conda/lib/python3.10/site-packages/transformers/modeling_utils.py:2618: UserWarning: Moving the following attributes in the config to the generation config: {'max_length': 200, 'early_stopping': True, 'num_beams': 5}. You are seeing this warning because you've set generation parameters in the model config, as opposed to in the generation config.\n warnings.warn(\n/opt/conda/lib/python3.10/site-packages/torch/nn/parallel/parallel_apply.py:79: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):\n/opt/conda/lib/python3.10/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n warnings.warn('Was asked to gather along dimension 0, but all '\n/opt/conda/lib/python3.10/site-packages/torch/nn/parallel/parallel_apply.py:79: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):\n/opt/conda/lib/python3.10/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n warnings.warn('Was asked to gather along dimension 0, but all '\n/opt/conda/lib/python3.10/site-packages/torch/nn/parallel/parallel_apply.py:79: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):\n/opt/conda/lib/python3.10/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n warnings.warn('Was asked to gather along dimension 0, but all '\n","output_type":"stream"},{"execution_count":20,"output_type":"execute_result","data":{"text/plain":"TrainOutput(global_step=1480, training_loss=1.4915999850711308, metrics={'train_runtime': 5596.282, 'train_samples_per_second': 4.214, 'train_steps_per_second': 0.264, 'total_flos': 6387540814725120.0, 'train_loss': 1.4915999850711308, 'epoch': 20.0})"},"metadata":{}}]},{"cell_type":"code","source":"trainer.push_to_hub()","metadata":{"execution":{"iopub.status.busy":"2024-10-13T05:36:34.582611Z","iopub.execute_input":"2024-10-13T05:36:34.583362Z","iopub.status.idle":"2024-10-13T05:36:53.872348Z","shell.execute_reply.started":"2024-10-13T05:36:34.583312Z","shell.execute_reply":"2024-10-13T05:36:53.871321Z"},"trusted":true},"execution_count":21,"outputs":[{"output_type":"display_data","data":{"text/plain":"events.out.tfevents.1728792198.7afee8f5ccfd.30.0: 0%| | 0.00/14.5k [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"036f7878ca094bb283ce097c4e0c5626"}},"metadata":{}},{"execution_count":21,"output_type":"execute_result","data":{"text/plain":"CommitInfo(commit_url='https://huggingface.co/sarch7040/M2M101/commit/9b4bf86769b33fe25a0f041812424d698f3d1680', commit_message='End of training', commit_description='', oid='9b4bf86769b33fe25a0f041812424d698f3d1680', pr_url=None, repo_url=RepoUrl('https://huggingface.co/sarch7040/M2M101', endpoint='https://huggingface.co', repo_type='model', repo_id='sarch7040/M2M101'), pr_revision=None, pr_num=None)"},"metadata":{}}]},{"cell_type":"code","source":"# Use a pipeline as a high-level helper\nfrom transformers import pipeline\n\npipe = pipeline(\"text2text-generation\", model=\"sarch7040/M2M101\")","metadata":{"execution":{"iopub.status.busy":"2024-10-13T05:36:53.873596Z","iopub.execute_input":"2024-10-13T05:36:53.873929Z","iopub.status.idle":"2024-10-13T05:37:12.785489Z","shell.execute_reply.started":"2024-10-13T05:36:53.873893Z","shell.execute_reply":"2024-10-13T05:37:12.784462Z"},"trusted":true},"execution_count":22,"outputs":[{"output_type":"display_data","data":{"text/plain":"config.json: 0%| | 0.00/935 [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"0db09f63a8aa4379a5168133798583d0"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"model.safetensors: 0%| | 0.00/1.94G [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"97f853df430548df9bb18598ba53b8c9"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"generation_config.json: 0%| | 0.00/198 [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"c1dde5aa3ba0493a9608e71f6b2679b2"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"tokenizer_config.json: 0%| | 0.00/19.8k [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"798e252d89044bc8b2ec925b1fbaf665"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"vocab.json: 0%| | 0.00/3.71M [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"020279d8ba894c4eb2b85909a85730b0"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"sentencepiece.bpe.model: 0%| | 0.00/2.42M [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"5939581fa17f4c8b8879292a5e295ffe"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"added_tokens.json: 0%| | 0.00/2.01k [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"1952c6c2a553475c8ec3e36a0fd827f3"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"special_tokens_map.json: 0%| | 0.00/1.56k [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"0f2c6a33f8b64a62a9d46cd9d6d2ebea"}},"metadata":{}},{"name":"stderr","text":"Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n","output_type":"stream"}]},{"cell_type":"code","source":"pipe(\"चाणक्य\")","metadata":{"execution":{"iopub.status.busy":"2024-10-13T05:37:12.787004Z","iopub.execute_input":"2024-10-13T05:37:12.787889Z","iopub.status.idle":"2024-10-13T05:37:13.833157Z","shell.execute_reply.started":"2024-10-13T05:37:12.787841Z","shell.execute_reply":"2024-10-13T05:37:13.832206Z"},"trusted":true},"execution_count":23,"outputs":[{"execution_count":23,"output_type":"execute_result","data":{"text/plain":"[{'generated_text': 'Charity is'}]"},"metadata":{}}]}]}
|
__pycache__/translation_model.cpython-312.pyc
ADDED
Binary file (942 Bytes). View file
|
|
app.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request
|
2 |
+
from translation_model import translate
|
3 |
+
import time
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
@app.route('/')
|
8 |
+
def index():
|
9 |
+
return render_template('index.html')
|
10 |
+
|
11 |
+
@app.route('/translate', methods=['POST'])
|
12 |
+
def translate_text():
|
13 |
+
start_time = time.time()
|
14 |
+
input_text = request.form['prakrit_text']
|
15 |
+
translated_text = translate(input_text)
|
16 |
+
translation_time = time.time() - start_time
|
17 |
+
return render_template('index.html', original_text=input_text, translated_text=translated_text, time_taken=translation_time)
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
app.run(debug=True)
|
model/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
model/README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: facebook/m2m100_418M
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- bleu
|
9 |
+
model-index:
|
10 |
+
- name: M2M101
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# M2M101
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6766
|
22 |
+
- Bleu: 15.3416
|
23 |
+
- Meteor: 0.4723
|
24 |
+
- Gen Len: 28.0271
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 1e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 20
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|
|
56 |
+
| No log | 1.0 | 74 | 5.8261 | 1.1786 | 0.1997 | 36.3831 |
|
57 |
+
| No log | 2.0 | 148 | 4.6170 | 2.648 | 0.2657 | 37.6068 |
|
58 |
+
| No log | 3.0 | 222 | 3.5128 | 5.7069 | 0.3217 | 32.2169 |
|
59 |
+
| No log | 4.0 | 296 | 2.5281 | 6.3134 | 0.3547 | 31.8576 |
|
60 |
+
| No log | 5.0 | 370 | 1.7177 | 8.5036 | 0.38 | 29.9729 |
|
61 |
+
| No log | 6.0 | 444 | 1.1666 | 10.1169 | 0.3925 | 28.0678 |
|
62 |
+
| 3.5641 | 7.0 | 518 | 0.8702 | 10.4207 | 0.4246 | 31.1051 |
|
63 |
+
| 3.5641 | 8.0 | 592 | 0.7376 | 12.6153 | 0.431 | 28.6339 |
|
64 |
+
| 3.5641 | 9.0 | 666 | 0.6901 | 13.2966 | 0.4503 | 29.2373 |
|
65 |
+
| 3.5641 | 10.0 | 740 | 0.6713 | 11.9772 | 0.4396 | 30.5661 |
|
66 |
+
| 3.5641 | 11.0 | 814 | 0.6651 | 14.0436 | 0.4506 | 30.2 |
|
67 |
+
| 3.5641 | 12.0 | 888 | 0.6678 | 13.2632 | 0.4514 | 31.0542 |
|
68 |
+
| 3.5641 | 13.0 | 962 | 0.6677 | 14.0924 | 0.4563 | 29.278 |
|
69 |
+
| 0.5121 | 14.0 | 1036 | 0.6693 | 14.746 | 0.4651 | 28.4068 |
|
70 |
+
| 0.5121 | 15.0 | 1110 | 0.6698 | 14.9278 | 0.4677 | 28.5153 |
|
71 |
+
| 0.5121 | 16.0 | 1184 | 0.6700 | 14.7431 | 0.4674 | 28.9288 |
|
72 |
+
| 0.5121 | 17.0 | 1258 | 0.6744 | 15.2934 | 0.4701 | 28.8678 |
|
73 |
+
| 0.5121 | 18.0 | 1332 | 0.6741 | 15.6776 | 0.4712 | 28.3492 |
|
74 |
+
| 0.5121 | 19.0 | 1406 | 0.6772 | 14.942 | 0.4707 | 28.9695 |
|
75 |
+
| 0.5121 | 20.0 | 1480 | 0.6766 | 15.3416 | 0.4723 | 28.0271 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.45.1
|
81 |
+
- Pytorch 2.4.0
|
82 |
+
- Datasets 3.0.1
|
83 |
+
- Tokenizers 0.20.0
|
model/added_tokens.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__af__": 128004,
|
3 |
+
"__am__": 128005,
|
4 |
+
"__ar__": 128006,
|
5 |
+
"__ast__": 128007,
|
6 |
+
"__az__": 128008,
|
7 |
+
"__ba__": 128009,
|
8 |
+
"__be__": 128010,
|
9 |
+
"__bg__": 128011,
|
10 |
+
"__bn__": 128012,
|
11 |
+
"__br__": 128013,
|
12 |
+
"__bs__": 128014,
|
13 |
+
"__ca__": 128015,
|
14 |
+
"__ceb__": 128016,
|
15 |
+
"__cs__": 128017,
|
16 |
+
"__cy__": 128018,
|
17 |
+
"__da__": 128019,
|
18 |
+
"__de__": 128020,
|
19 |
+
"__el__": 128021,
|
20 |
+
"__en__": 128022,
|
21 |
+
"__es__": 128023,
|
22 |
+
"__et__": 128024,
|
23 |
+
"__fa__": 128025,
|
24 |
+
"__ff__": 128026,
|
25 |
+
"__fi__": 128027,
|
26 |
+
"__fr__": 128028,
|
27 |
+
"__fy__": 128029,
|
28 |
+
"__ga__": 128030,
|
29 |
+
"__gd__": 128031,
|
30 |
+
"__gl__": 128032,
|
31 |
+
"__gu__": 128033,
|
32 |
+
"__ha__": 128034,
|
33 |
+
"__he__": 128035,
|
34 |
+
"__hi__": 128036,
|
35 |
+
"__hr__": 128037,
|
36 |
+
"__ht__": 128038,
|
37 |
+
"__hu__": 128039,
|
38 |
+
"__hy__": 128040,
|
39 |
+
"__id__": 128041,
|
40 |
+
"__ig__": 128042,
|
41 |
+
"__ilo__": 128043,
|
42 |
+
"__is__": 128044,
|
43 |
+
"__it__": 128045,
|
44 |
+
"__ja__": 128046,
|
45 |
+
"__jv__": 128047,
|
46 |
+
"__ka__": 128048,
|
47 |
+
"__kk__": 128049,
|
48 |
+
"__km__": 128050,
|
49 |
+
"__kn__": 128051,
|
50 |
+
"__ko__": 128052,
|
51 |
+
"__lb__": 128053,
|
52 |
+
"__lg__": 128054,
|
53 |
+
"__ln__": 128055,
|
54 |
+
"__lo__": 128056,
|
55 |
+
"__lt__": 128057,
|
56 |
+
"__lv__": 128058,
|
57 |
+
"__mg__": 128059,
|
58 |
+
"__mk__": 128060,
|
59 |
+
"__ml__": 128061,
|
60 |
+
"__mn__": 128062,
|
61 |
+
"__mr__": 128063,
|
62 |
+
"__ms__": 128064,
|
63 |
+
"__my__": 128065,
|
64 |
+
"__ne__": 128066,
|
65 |
+
"__nl__": 128067,
|
66 |
+
"__no__": 128068,
|
67 |
+
"__ns__": 128069,
|
68 |
+
"__oc__": 128070,
|
69 |
+
"__or__": 128071,
|
70 |
+
"__pa__": 128072,
|
71 |
+
"__pl__": 128073,
|
72 |
+
"__ps__": 128074,
|
73 |
+
"__pt__": 128075,
|
74 |
+
"__ro__": 128076,
|
75 |
+
"__ru__": 128077,
|
76 |
+
"__sd__": 128078,
|
77 |
+
"__si__": 128079,
|
78 |
+
"__sk__": 128080,
|
79 |
+
"__sl__": 128081,
|
80 |
+
"__so__": 128082,
|
81 |
+
"__sq__": 128083,
|
82 |
+
"__sr__": 128084,
|
83 |
+
"__ss__": 128085,
|
84 |
+
"__su__": 128086,
|
85 |
+
"__sv__": 128087,
|
86 |
+
"__sw__": 128088,
|
87 |
+
"__ta__": 128089,
|
88 |
+
"__th__": 128090,
|
89 |
+
"__tl__": 128091,
|
90 |
+
"__tn__": 128092,
|
91 |
+
"__tr__": 128093,
|
92 |
+
"__uk__": 128094,
|
93 |
+
"__ur__": 128095,
|
94 |
+
"__uz__": 128096,
|
95 |
+
"__vi__": 128097,
|
96 |
+
"__wo__": 128098,
|
97 |
+
"__xh__": 128099,
|
98 |
+
"__yi__": 128100,
|
99 |
+
"__yo__": 128101,
|
100 |
+
"__zh__": 128102,
|
101 |
+
"__zu__": 128103
|
102 |
+
}
|
model/config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/m2m100_418M",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "relu",
|
5 |
+
"architectures": [
|
6 |
+
"M2M100ForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"d_model": 1024,
|
11 |
+
"decoder_attention_heads": 16,
|
12 |
+
"decoder_ffn_dim": 4096,
|
13 |
+
"decoder_layerdrop": 0.05,
|
14 |
+
"decoder_layers": 12,
|
15 |
+
"decoder_start_token_id": 2,
|
16 |
+
"dropout": 0.1,
|
17 |
+
"early_stopping": null,
|
18 |
+
"encoder_attention_heads": 16,
|
19 |
+
"encoder_ffn_dim": 4096,
|
20 |
+
"encoder_layerdrop": 0.05,
|
21 |
+
"encoder_layers": 12,
|
22 |
+
"eos_token_id": 2,
|
23 |
+
"gradient_checkpointing": false,
|
24 |
+
"init_std": 0.02,
|
25 |
+
"is_encoder_decoder": true,
|
26 |
+
"max_length": null,
|
27 |
+
"max_position_embeddings": 1024,
|
28 |
+
"model_type": "m2m_100",
|
29 |
+
"num_beams": null,
|
30 |
+
"num_hidden_layers": 12,
|
31 |
+
"pad_token_id": 1,
|
32 |
+
"scale_embedding": true,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.45.1",
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 128112
|
37 |
+
}
|
model/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 0,
|
3 |
+
"decoder_start_token_id": 2,
|
4 |
+
"early_stopping": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"max_length": 200,
|
7 |
+
"num_beams": 5,
|
8 |
+
"pad_token_id": 1,
|
9 |
+
"transformers_version": "4.45.1"
|
10 |
+
}
|
model/special_tokens_map.json
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"__af__",
|
4 |
+
"__am__",
|
5 |
+
"__ar__",
|
6 |
+
"__ast__",
|
7 |
+
"__az__",
|
8 |
+
"__ba__",
|
9 |
+
"__be__",
|
10 |
+
"__bg__",
|
11 |
+
"__bn__",
|
12 |
+
"__br__",
|
13 |
+
"__bs__",
|
14 |
+
"__ca__",
|
15 |
+
"__ceb__",
|
16 |
+
"__cs__",
|
17 |
+
"__cy__",
|
18 |
+
"__da__",
|
19 |
+
"__de__",
|
20 |
+
"__el__",
|
21 |
+
"__en__",
|
22 |
+
"__es__",
|
23 |
+
"__et__",
|
24 |
+
"__fa__",
|
25 |
+
"__ff__",
|
26 |
+
"__fi__",
|
27 |
+
"__fr__",
|
28 |
+
"__fy__",
|
29 |
+
"__ga__",
|
30 |
+
"__gd__",
|
31 |
+
"__gl__",
|
32 |
+
"__gu__",
|
33 |
+
"__ha__",
|
34 |
+
"__he__",
|
35 |
+
"__hi__",
|
36 |
+
"__hr__",
|
37 |
+
"__ht__",
|
38 |
+
"__hu__",
|
39 |
+
"__hy__",
|
40 |
+
"__id__",
|
41 |
+
"__ig__",
|
42 |
+
"__ilo__",
|
43 |
+
"__is__",
|
44 |
+
"__it__",
|
45 |
+
"__ja__",
|
46 |
+
"__jv__",
|
47 |
+
"__ka__",
|
48 |
+
"__kk__",
|
49 |
+
"__km__",
|
50 |
+
"__kn__",
|
51 |
+
"__ko__",
|
52 |
+
"__lb__",
|
53 |
+
"__lg__",
|
54 |
+
"__ln__",
|
55 |
+
"__lo__",
|
56 |
+
"__lt__",
|
57 |
+
"__lv__",
|
58 |
+
"__mg__",
|
59 |
+
"__mk__",
|
60 |
+
"__ml__",
|
61 |
+
"__mn__",
|
62 |
+
"__mr__",
|
63 |
+
"__ms__",
|
64 |
+
"__my__",
|
65 |
+
"__ne__",
|
66 |
+
"__nl__",
|
67 |
+
"__no__",
|
68 |
+
"__ns__",
|
69 |
+
"__oc__",
|
70 |
+
"__or__",
|
71 |
+
"__pa__",
|
72 |
+
"__pl__",
|
73 |
+
"__ps__",
|
74 |
+
"__pt__",
|
75 |
+
"__ro__",
|
76 |
+
"__ru__",
|
77 |
+
"__sd__",
|
78 |
+
"__si__",
|
79 |
+
"__sk__",
|
80 |
+
"__sl__",
|
81 |
+
"__so__",
|
82 |
+
"__sq__",
|
83 |
+
"__sr__",
|
84 |
+
"__ss__",
|
85 |
+
"__su__",
|
86 |
+
"__sv__",
|
87 |
+
"__sw__",
|
88 |
+
"__ta__",
|
89 |
+
"__th__",
|
90 |
+
"__tl__",
|
91 |
+
"__tn__",
|
92 |
+
"__tr__",
|
93 |
+
"__uk__",
|
94 |
+
"__ur__",
|
95 |
+
"__uz__",
|
96 |
+
"__vi__",
|
97 |
+
"__wo__",
|
98 |
+
"__xh__",
|
99 |
+
"__yi__",
|
100 |
+
"__yo__",
|
101 |
+
"__zh__",
|
102 |
+
"__zu__"
|
103 |
+
],
|
104 |
+
"bos_token": "<s>",
|
105 |
+
"eos_token": "</s>",
|
106 |
+
"pad_token": "<pad>",
|
107 |
+
"sep_token": "</s>",
|
108 |
+
"unk_token": "<unk>"
|
109 |
+
}
|
model/tokenizer_config.json
ADDED
@@ -0,0 +1,951 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "__af__",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "__am__",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "__ar__",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "__ast__",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "__az__",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "__ba__",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "__be__",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "__bg__",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "__bn__",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "__br__",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "__bs__",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "__ca__",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "__ceb__",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "__cs__",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "__cy__",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "__da__",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "__de__",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "__el__",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "__en__",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "__es__",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "__et__",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "__fa__",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "__ff__",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "__fi__",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "__fr__",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "__fy__",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "__ga__",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "__gd__",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "__gl__",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "__gu__",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "__ha__",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "__he__",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "__hi__",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "__hr__",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "__ht__",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "__hu__",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "__hy__",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "__id__",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "__ig__",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "__ilo__",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "__is__",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "__it__",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "__ja__",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "__jv__",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "__ka__",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "__kk__",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "__km__",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "__kn__",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "__ko__",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "__lb__",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "__lg__",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "__ln__",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "__lo__",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "__lt__",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "__lv__",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "__mg__",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "__mk__",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "__ml__",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "__mn__",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "__mr__",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "__ms__",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "__my__",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "__ne__",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "__nl__",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "__no__",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "__ns__",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "__oc__",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "__or__",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "__pa__",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "__pl__",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "__ps__",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "__pt__",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "__ro__",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "__ru__",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "__sd__",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "__si__",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "__sk__",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "__sl__",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "__so__",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "__sq__",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "__sr__",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "__ss__",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "__su__",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "__sv__",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "__sw__",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "__ta__",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "__th__",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "__tl__",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "__tn__",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "__tr__",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "__uk__",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "__ur__",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "__uz__",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "__vi__",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "__wo__",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "__xh__",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "__yi__",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "__yo__",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "__zh__",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "__zu__",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
}
|
835 |
+
},
|
836 |
+
"additional_special_tokens": [
|
837 |
+
"__af__",
|
838 |
+
"__am__",
|
839 |
+
"__ar__",
|
840 |
+
"__ast__",
|
841 |
+
"__az__",
|
842 |
+
"__ba__",
|
843 |
+
"__be__",
|
844 |
+
"__bg__",
|
845 |
+
"__bn__",
|
846 |
+
"__br__",
|
847 |
+
"__bs__",
|
848 |
+
"__ca__",
|
849 |
+
"__ceb__",
|
850 |
+
"__cs__",
|
851 |
+
"__cy__",
|
852 |
+
"__da__",
|
853 |
+
"__de__",
|
854 |
+
"__el__",
|
855 |
+
"__en__",
|
856 |
+
"__es__",
|
857 |
+
"__et__",
|
858 |
+
"__fa__",
|
859 |
+
"__ff__",
|
860 |
+
"__fi__",
|
861 |
+
"__fr__",
|
862 |
+
"__fy__",
|
863 |
+
"__ga__",
|
864 |
+
"__gd__",
|
865 |
+
"__gl__",
|
866 |
+
"__gu__",
|
867 |
+
"__ha__",
|
868 |
+
"__he__",
|
869 |
+
"__hi__",
|
870 |
+
"__hr__",
|
871 |
+
"__ht__",
|
872 |
+
"__hu__",
|
873 |
+
"__hy__",
|
874 |
+
"__id__",
|
875 |
+
"__ig__",
|
876 |
+
"__ilo__",
|
877 |
+
"__is__",
|
878 |
+
"__it__",
|
879 |
+
"__ja__",
|
880 |
+
"__jv__",
|
881 |
+
"__ka__",
|
882 |
+
"__kk__",
|
883 |
+
"__km__",
|
884 |
+
"__kn__",
|
885 |
+
"__ko__",
|
886 |
+
"__lb__",
|
887 |
+
"__lg__",
|
888 |
+
"__ln__",
|
889 |
+
"__lo__",
|
890 |
+
"__lt__",
|
891 |
+
"__lv__",
|
892 |
+
"__mg__",
|
893 |
+
"__mk__",
|
894 |
+
"__ml__",
|
895 |
+
"__mn__",
|
896 |
+
"__mr__",
|
897 |
+
"__ms__",
|
898 |
+
"__my__",
|
899 |
+
"__ne__",
|
900 |
+
"__nl__",
|
901 |
+
"__no__",
|
902 |
+
"__ns__",
|
903 |
+
"__oc__",
|
904 |
+
"__or__",
|
905 |
+
"__pa__",
|
906 |
+
"__pl__",
|
907 |
+
"__ps__",
|
908 |
+
"__pt__",
|
909 |
+
"__ro__",
|
910 |
+
"__ru__",
|
911 |
+
"__sd__",
|
912 |
+
"__si__",
|
913 |
+
"__sk__",
|
914 |
+
"__sl__",
|
915 |
+
"__so__",
|
916 |
+
"__sq__",
|
917 |
+
"__sr__",
|
918 |
+
"__ss__",
|
919 |
+
"__su__",
|
920 |
+
"__sv__",
|
921 |
+
"__sw__",
|
922 |
+
"__ta__",
|
923 |
+
"__th__",
|
924 |
+
"__tl__",
|
925 |
+
"__tn__",
|
926 |
+
"__tr__",
|
927 |
+
"__uk__",
|
928 |
+
"__ur__",
|
929 |
+
"__uz__",
|
930 |
+
"__vi__",
|
931 |
+
"__wo__",
|
932 |
+
"__xh__",
|
933 |
+
"__yi__",
|
934 |
+
"__yo__",
|
935 |
+
"__zh__",
|
936 |
+
"__zu__"
|
937 |
+
],
|
938 |
+
"bos_token": "<s>",
|
939 |
+
"clean_up_tokenization_spaces": false,
|
940 |
+
"eos_token": "</s>",
|
941 |
+
"language_codes": "m2m100",
|
942 |
+
"model_max_length": 1024,
|
943 |
+
"num_madeup_words": 8,
|
944 |
+
"pad_token": "<pad>",
|
945 |
+
"sep_token": "</s>",
|
946 |
+
"sp_model_kwargs": {},
|
947 |
+
"src_lang": "en",
|
948 |
+
"tgt_lang": null,
|
949 |
+
"tokenizer_class": "M2M100Tokenizer",
|
950 |
+
"unk_token": "<unk>"
|
951 |
+
}
|
model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
tranformers
|
3 |
+
flask
|
4 |
+
|
5 |
+
|
static/styles.css
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* General Styling */
|
2 |
+
body {
|
3 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
4 |
+
background-color: #f9f9f9;
|
5 |
+
margin: 0;
|
6 |
+
padding: 0;
|
7 |
+
line-height: 1.6;
|
8 |
+
color: #333;
|
9 |
+
}
|
10 |
+
|
11 |
+
.container {
|
12 |
+
max-width: 800px;
|
13 |
+
margin: 50px auto;
|
14 |
+
padding: 20px;
|
15 |
+
background-color: #fff;
|
16 |
+
border-radius: 15px;
|
17 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
|
18 |
+
}
|
19 |
+
|
20 |
+
header h1 {
|
21 |
+
text-align: center;
|
22 |
+
font-size: 2.5rem;
|
23 |
+
color: #333;
|
24 |
+
margin-bottom: 20px;
|
25 |
+
}
|
26 |
+
|
27 |
+
form {
|
28 |
+
display: flex;
|
29 |
+
flex-direction: column;
|
30 |
+
gap: 15px;
|
31 |
+
margin-bottom: 30px;
|
32 |
+
}
|
33 |
+
|
34 |
+
textarea {
|
35 |
+
width: 100%;
|
36 |
+
padding: 12px;
|
37 |
+
font-size: 1rem;
|
38 |
+
border: 1px solid #ddd;
|
39 |
+
border-radius: 8px;
|
40 |
+
resize: vertical;
|
41 |
+
min-height: 150px;
|
42 |
+
box-sizing: border-box;
|
43 |
+
}
|
44 |
+
|
45 |
+
button.translate-btn {
|
46 |
+
position: relative;
|
47 |
+
padding: 15px;
|
48 |
+
font-size: 1.1rem;
|
49 |
+
font-weight: bold;
|
50 |
+
background-color: #4CAF50;
|
51 |
+
color: white;
|
52 |
+
border: none;
|
53 |
+
border-radius: 8px;
|
54 |
+
cursor: pointer;
|
55 |
+
transition: background-color 0.3s ease;
|
56 |
+
}
|
57 |
+
|
58 |
+
button.translate-btn:hover {
|
59 |
+
background-color: #45a049;
|
60 |
+
}
|
61 |
+
|
62 |
+
button.translate-btn[disabled] {
|
63 |
+
background-color: #8bc34a;
|
64 |
+
cursor: not-allowed;
|
65 |
+
}
|
66 |
+
|
67 |
+
.spinner {
|
68 |
+
position: absolute;
|
69 |
+
right: 20px;
|
70 |
+
top: 50%;
|
71 |
+
width: 20px;
|
72 |
+
height: 20px;
|
73 |
+
margin-top: -10px;
|
74 |
+
border: 3px solid rgba(255, 255, 255, 0.6);
|
75 |
+
border-top: 3px solid #fff;
|
76 |
+
border-radius: 50%;
|
77 |
+
animation: spin 1s linear infinite;
|
78 |
+
}
|
79 |
+
|
80 |
+
.hidden {
|
81 |
+
display: none;
|
82 |
+
}
|
83 |
+
|
84 |
+
@keyframes spin {
|
85 |
+
from {
|
86 |
+
transform: rotate(0deg);
|
87 |
+
}
|
88 |
+
to {
|
89 |
+
transform: rotate(360deg);
|
90 |
+
}
|
91 |
+
}
|
92 |
+
|
93 |
+
/* Responsive Styling */
|
94 |
+
|
95 |
+
@media screen and (max-width: 768px) {
|
96 |
+
/* Other responsive styles remain the same */
|
97 |
+
}
|
98 |
+
|
99 |
+
/* ... */
|
templates/index.html
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Prakrit to English Translation</title>
|
7 |
+
<link rel="stylesheet" href="/static/styles.css">
|
8 |
+
</head>
|
9 |
+
<body>
|
10 |
+
<div class="container">
|
11 |
+
<header>
|
12 |
+
<h1>Maharashtri Prakrit to English Translator</h1>
|
13 |
+
</header>
|
14 |
+
<main>
|
15 |
+
<form action="/translate" method="POST" id="translation-form">
|
16 |
+
<div class="form-group">
|
17 |
+
<label for="prakrit_text">Enter Prakrit Sentence:</label>
|
18 |
+
<textarea name="prakrit_text" id="prakrit_text" rows="4" required></textarea>
|
19 |
+
</div>
|
20 |
+
<button type="submit" class="translate-btn" id="translate-btn">
|
21 |
+
<span id="btn-text">Translate</span>
|
22 |
+
<span id="loading-spinner" class="spinner hidden"></span>
|
23 |
+
</button>
|
24 |
+
</form>
|
25 |
+
|
26 |
+
{% if original_text %}
|
27 |
+
<section class="translation-result">
|
28 |
+
<h2>Prakrit Text:</h2>
|
29 |
+
<p>{{ original_text }}</p>
|
30 |
+
|
31 |
+
<h2>Translated English Text:</h2>
|
32 |
+
<p>{{ translated_text }}</p>
|
33 |
+
|
34 |
+
<h3>Translation Time: {{ time_taken }} seconds</h3>
|
35 |
+
</section>
|
36 |
+
{% endif %}
|
37 |
+
</main>
|
38 |
+
</div>
|
39 |
+
|
40 |
+
<script>
|
41 |
+
// Add event listener to the form
|
42 |
+
document.getElementById('translation-form').addEventListener('submit', function() {
|
43 |
+
// Show loading spinner
|
44 |
+
document.getElementById('loading-spinner').classList.remove('hidden');
|
45 |
+
// Change button text to 'Translating...'
|
46 |
+
document.getElementById('btn-text').textContent = 'Translating...';
|
47 |
+
// Disable the button to prevent multiple submissions
|
48 |
+
document.getElementById('translate-btn').setAttribute('disabled', 'true');
|
49 |
+
});
|
50 |
+
|
51 |
+
// Assuming that after the translation, the page reloads with new content.
|
52 |
+
// You can customize this based on your specific backend process (AJAX, etc.)
|
53 |
+
</script>
|
54 |
+
</body>
|
55 |
+
</html>
|
translation_model.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the translation model at the start to avoid reloading on each request
|
5 |
+
start_time = time.time()
|
6 |
+
pipe = pipeline("text2text-generation", model="model")
|
7 |
+
print(f"Model loaded in {time.time() - start_time} seconds")
|
8 |
+
|
9 |
+
def translate(input_text):
|
10 |
+
print(f"Input text: {input_text}")
|
11 |
+
output_text = pipe(
|
12 |
+
input_text,
|
13 |
+
do_sample=True,
|
14 |
+
num_beams=5,
|
15 |
+
max_length=50,
|
16 |
+
no_repeat_ngram_size=2,
|
17 |
+
temperature=0.7
|
18 |
+
)
|
19 |
+
translated_text = output_text[0]['generated_text']
|
20 |
+
print(f"Output text: {translated_text}")
|
21 |
+
return translated_text
|