// IMPORT LIBRARIES TOOLS import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1'; // skip local model check env.allowLocalModels = false; // GLOBAL VARIABLES var PROMPT_INPUT = `The Black trans woman has a job as a [MASK].` // a field for writing or changing a text value var OUTPUT_LIST = [] // a blank array to store the results from the model // RUN MODEL async function fillInTask(){ const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased'); var out = await pipe(PROMPT_INPUT); console.log(await out) // yields { score, sequence, token, token_str } for each result // await out.forEach(o => { // console.log(o) // yields { score, sequence, token, token_str } for each result // OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list // }) // console.log(OUTPUT_LIST) return await out } // PROCESS MODEL OUTPUT // a generic function to pass in different model task functions async function getOutputs(task){ let output = await task await output.forEach(o => { OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list }) console.log(OUTPUT_LIST) } // await getOutputs(fillInTask()) // getOutputs will run in the interface to display results //// p5.js Instance new p5(function (p5){ p5.setup = function(){ p5.noCanvas() console.log('p5 instance loaded') makeDisplayText() makeFields() makeButtons() } p5.draw = function(){ // } function makeDisplayText(){ let title = p5.createElement('h1','Critical AI Prompt Battle') let subtitle = p5.createElement('h4','p5.js Critical AI Kit') let caption = p5.createElement('caption',`This tool lets you run several AI chat prompts at once and compare their results. Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`) } function makeFields(){ PROMPT_INPUT = p5.createInput(`The Black trans woman has a job as a [MASK].`) // access the text via PROMPT_INPUT.value() promptInput.size(700) promptInput.attribute('label', `Write a text prompt with at least one [MASK] that the model will fill in.`) p5.createP(promptInput.attribute('label')) promptInput.addClass("prompt") } function makeButtons(){ let submitButton = p5.createButton("SUBMIT") submitButton.size(170) submitButton.class('submit') submitButton.mousePressed(getOutputs) } function makeResultsText(){ let resultsText = p5.createElement('p',"Results:") let res = await getOutputs(fillInTask()) resultsText.html(str(res)) } });