Spaces:
Running
Running
File size: 7,089 Bytes
ceb472c a083558 4189f9e 8993dbb 4189f9e ceb472c a02510b 8c26bf2 f9337ec 8c26bf2 8cfe734 4189f9e b23bba4 a9e7257 b23bba4 372a0c2 8c1ca46 a9e7257 eef4c4d 8cfe734 a9e7257 1b99d9a eef4c4d a9e7257 eef4c4d 00a54b5 9e2a81c 372a0c2 a083558 0b9db9e 8c46069 a6f115b 8c46069 0b9db9e 98ddae8 8c46069 1b6e6cc 0b9db9e 98ddae8 8cfe734 1b6e6cc 8cfe734 8c1ca46 1b6e6cc 8cfe734 8c1ca46 8cfe734 372a0c2 8cfe734 8c1ca46 a083558 f0ff9a3 8c1ca46 8cfe734 8c1ca46 b23bba4 eb4bd74 b23bba4 eb800fb 2988cff 8c46069 4d4ea35 6ff171e eb800fb 855a94a ceb472c b23bba4 4d4ea35 b23bba4 6ff171e b23bba4 2988cff b23bba4 6ff171e 855a94a 60949e3 227827f 60949e3 227827f cdb9c9c 9a02618 60949e3 8cfe734 9e2a81c cdb9c9c 9e2a81c aa87ec6 d336f39 cdb9c9c 60949e3 e37c55c d336f39 c4835d8 cdb9c9c c4835d8 2988cff 4fbd4b0 a083558 4fbd4b0 c4835d8 4fbd4b0 8cfe734 8f87f71 52d92f9 ab1373b 22a8a4d 8cfe734 a02510b 3960a3b 8f87f71 3960a3b 60949e3 2e68462 96b4bd1 2e68462 60949e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
// IMPORT LIBRARIES TOOLS
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
// skip local model check
env.allowLocalModels = false;
// GLOBAL VARIABLES
var PREPROMPT = `Please continue the story, and fill any [MASK] with your own words:`
// let PREPROMPT = `Please complete the phrase and fill in any [MASK]: `
var PROMPT_INPUT = `The [BLANK] has a job as a [MASK] but...` // a field for writing or changing a text value
var promptField // an html element to hold the prompt
var outText // an html element to hold the results
var blanksArray = [] // an empty list to store all the variables we enter to modify the prompt
// e.g. ["woman", "man", "non-binary person"]
// RUN TEXT-GEN MODEL
async function textGenTask(pre, prompt, blanks){
console.log('text-gen task initiated')
// Create concatenated prompt array including preprompt and all variable prompts
let promptArray = []
promptArray.push(pre) // add preprompt to the list of prompts
// Fill in blanks from our sample prompt and make new prompts using our variable list 'blanksArray'
blanks.forEach(b => {
let p = prompt.replace('[BLANK]', b) // replace the string segment with an item from the blanksArray
promptArray.push(p) // add the new prompt to the list we created
})
// create combined fill prompt
let INPUT = promptArray.toString()
console.log(INPUT)
// let INPUT = pre + prompt // simple concatenated input
// let INPUT = prompt // basic prompt input
// PICK MODEL
let MODEL = 'Xenova/flan-alpaca-large'
// MODELS LIST
// - Xenova/bloom-560m
// - Xenova/distilgpt2
// - Xenova/LaMini-Cerebras-256M
// - Xenova/gpt-neo-125M // not working well
// - Xenova/llama2.c-stories15M // only fairytails
// - webml/TinyLlama-1.1B-Chat-v1.0
// - Xenova/TinyLlama-1.1B-Chat-v1.0
// - Xenova/flan-alpaca-large //text2text
// const pipe = await pipeline('text-generation', MODEL) //different task type, also for text generation
const pipe = await pipeline('text2text-generation', MODEL)
var hyperparameters = { max_new_tokens: 200, top_k: 90, repetition_penalty: 1.5 }
// setting hyperparameters
// max_new_tokens: 256, top_k: 50, temperature: 0.7, do_sample: true, no_repeat_ngram_size: 2, num_return_sequences: 2 (must be 1?)
// change model run to iterative for each prompt generated locally — will be more expensive??
// promptArray.forEach(async i => {} //this was a loop to wrap model run multiple times
// RUN INPUT THROUGH MODEL,
var out = await pipe(INPUT, hyperparameters)
console.log(await out)
console.log('text-gen task completed')
// PARSE RESULTS as a list of outputs, two different ways depending on the model
// parsing of output
// await out.forEach(o => {
// console.log(o)
// OUTPUT_LIST.push(o.generated_text)
// })
// alternate format for parsing, for chat model type
// await out.choices.forEach(o => {
// console.log(o)
// OUTPUT_LIST.push(o.message.content)
// })
let OUTPUT_LIST = out[0].generated_text //not a list anymore just one result
// OUTPUT_LIST.push(out[0].generated_text)
console.log(OUTPUT_LIST)
console.log('text-gen parsing complete')
return await OUTPUT_LIST
// return await out
}
// RUN FILL-IN MODEL
async function fillInTask(input){
console.log('fill-in task initiated')
// MODELS LIST
// - Xenova/bert-base-uncased
const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased');
var out = await pipe(input);
console.log(await out) // yields { score, sequence, token, token_str } for each result
let OUTPUT_LIST = [] // a blank array to store the results from the model
// parsing of output
await out.forEach(o => {
console.log(o) // yields { score, sequence, token, token_str } for each result
OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list
})
console.log(await OUTPUT_LIST)
console.log('fill-in task completed')
// return await out
return await OUTPUT_LIST
}
//// p5.js Instance
new p5(function (p5){
p5.setup = function(){
p5.noCanvas()
console.log('p5 instance loaded')
makeTextDisplay()
makeFields()
makeButtons()
}
p5.draw = function(){
//
}
function makeTextDisplay(){
const title = p5.createElement('h1','p5.js Critical AI Prompt Battle')
const intro = p5.createP(`This tool lets you explore several AI prompts results at once.`)
p5.createP(`Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`)
}
function makeFields(){
promptField = p5.createInput(PROMPT_INPUT) // turns the string into an input; now access the text via PROMPT_INPUT.value()
promptField.size(700)
promptField.attribute('label', `Write a text prompt with one [MASK] that the model will fill in.`)
p5.createP(promptField.attribute('label'))
promptField.addClass("prompt")
const fieldsDiv = p5.createDiv()
fieldsDiv.id('fieldsDiv')
addField()
}
function makeButtons(){
// press to run model
const submitButton = p5.createButton("SUBMIT")
submitButton.size(170)
submitButton.class('submit')
submitButton.mousePressed(displayResults)
// press to add more blanks to fill in
const addButton = p5.createButton("more blanks")
addButton.size(170)
// addButton.position(220,500)
addButton.mousePressed(addField)
// also make results placeholder
const outHeader = p5.createElement('h3',"Results")
outText = p5.createP('').id('results')
}
async function displayResults(){
console.log('submitButton pressed')
// insert waiting dots into results space of interface
outText.html('...', false)
// GRAB CURRENT FIELD INPUTS FROM PROMPT & BLANKS
PROMPT_INPUT = promptField.value() // grab update to the prompt if it's been changed
console.log("latest prompt: ", PROMPT_INPUT)
let blanksValues = []
blanksArray.forEach(b => {
blanksValues.push(b.value())
})
console.log(blanksValues)
// let blanksValues = blanksArray.map(b => b.value)
// call the function that runs the model for the task of your choice here
// make sure to use the PROMPT_INPUT as a parameter, or also the PREPROMPT if valid for that task
let outs = await textGenTask(PREPROMPT, PROMPT_INPUT, blanksValues)
console.log(outs)
// insert the model outputs into the paragraph
await outText.html(outs, false) // false replaces text instead of appends
}
function addField(){
let f = p5.createInput("")
f.class("blank")
f.parent("#fieldsDiv")
blanksArray.push(f)
console.log("made variable field")
// Cap the number of fields, avoids token limit in prompt
let blanks = document.querySelectorAll(".blank")
if (blanks.length > 5){
console.log(blanks.length)
addButton.style('visibility','hidden')
}
}
});
|