File size: 7,089 Bytes
ceb472c
 
a083558
4189f9e
8993dbb
4189f9e
 
ceb472c
a02510b
8c26bf2
f9337ec
8c26bf2
8cfe734
 
 
 
4189f9e
b23bba4
 
a9e7257
b23bba4
372a0c2
8c1ca46
a9e7257
eef4c4d
 
8cfe734
a9e7257
1b99d9a
eef4c4d
a9e7257
eef4c4d
 
00a54b5
9e2a81c
372a0c2
 
a083558
 
0b9db9e
8c46069
 
 
 
 
a6f115b
 
8c46069
 
0b9db9e
98ddae8
8c46069
1b6e6cc
0b9db9e
98ddae8
8cfe734
1b6e6cc
8cfe734
8c1ca46
1b6e6cc
8cfe734
8c1ca46
 
8cfe734
372a0c2
8cfe734
 
 
 
8c1ca46
 
 
 
 
 
a083558
 
f0ff9a3
 
 
 
 
8c1ca46
8cfe734
8c1ca46
b23bba4
 
 
 
 
eb4bd74
b23bba4
 
eb800fb
2988cff
 
8c46069
 
 
4d4ea35
6ff171e
eb800fb
855a94a
ceb472c
b23bba4
4d4ea35
 
b23bba4
 
 
 
 
6ff171e
b23bba4
2988cff
 
b23bba4
 
6ff171e
855a94a
60949e3
 
 
 
 
 
227827f
60949e3
 
 
 
 
 
 
 
227827f
cdb9c9c
 
9a02618
60949e3
 
 
8cfe734
 
 
 
 
9e2a81c
cdb9c9c
9e2a81c
 
 
 
 
aa87ec6
d336f39
cdb9c9c
60949e3
 
e37c55c
d336f39
 
 
 
 
 
c4835d8
 
cdb9c9c
c4835d8
2988cff
 
4fbd4b0
a083558
4fbd4b0
c4835d8
 
4fbd4b0
8cfe734
 
8f87f71
52d92f9
ab1373b
 
 
 
22a8a4d
8cfe734
a02510b
3960a3b
 
 
 
8f87f71
3960a3b
 
60949e3
2e68462
96b4bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e68462
60949e3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

// IMPORT LIBRARIES TOOLS
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';

// skip local model check
env.allowLocalModels = false;

// GLOBAL VARIABLES

var PREPROMPT = `Please continue the story, and fill any [MASK] with your own words:`
// let PREPROMPT = `Please complete the phrase and fill in any [MASK]: `
var PROMPT_INPUT = `The [BLANK] has a job as a [MASK] but...` // a field for writing or changing a text value
var promptField // an html element to hold the prompt
var outText // an html element to hold the results
var blanksArray = [] // an empty list to store all the variables we enter to modify the prompt
// e.g. ["woman", "man", "non-binary person"]

// RUN TEXT-GEN MODEL

async function textGenTask(pre, prompt, blanks){
  console.log('text-gen task initiated')
  
  // Create concatenated prompt array including preprompt and all variable prompts
  let promptArray = []
  promptArray.push(pre) // add preprompt to the list of prompts

  // Fill in blanks from our sample prompt and make new prompts using our variable list 'blanksArray'
  blanks.forEach(b => {
    let p = prompt.replace('[BLANK]', b) // replace the string segment with an item from the blanksArray
    promptArray.push(p) // add the new prompt to the list we created
  })

  // create combined fill prompt
  let INPUT = promptArray.toString()
  console.log(INPUT)
  // let INPUT = pre + prompt // simple concatenated input
  // let INPUT = prompt // basic prompt input

  // PICK MODEL 
  let MODEL = 'Xenova/flan-alpaca-large'

  // MODELS LIST
  // - Xenova/bloom-560m
  // - Xenova/distilgpt2
  // - Xenova/LaMini-Cerebras-256M
  // - Xenova/gpt-neo-125M // not working well
  // - Xenova/llama2.c-stories15M // only fairytails
  // - webml/TinyLlama-1.1B-Chat-v1.0
  // - Xenova/TinyLlama-1.1B-Chat-v1.0
  // - Xenova/flan-alpaca-large //text2text

  
  // const pipe = await pipeline('text-generation', MODEL) //different task type, also for text generation
  const pipe = await pipeline('text2text-generation', MODEL)

  var hyperparameters = { max_new_tokens: 200, top_k: 90, repetition_penalty: 1.5 }
    // setting hyperparameters
    // max_new_tokens: 256, top_k: 50, temperature: 0.7, do_sample: true, no_repeat_ngram_size: 2, num_return_sequences: 2 (must be 1?)

  // change model run to iterative for each prompt generated locally — will be more expensive??
  // promptArray.forEach(async i => {} //this was a loop to wrap model run multiple times
  
  // RUN INPUT THROUGH MODEL, 
  var out = await pipe(INPUT, hyperparameters)

  console.log(await out)
  console.log('text-gen task completed')
  
  // PARSE RESULTS as a list of outputs, two different ways depending on the model
  
  // parsing of output
  // await out.forEach(o => {
  //   console.log(o)
  //   OUTPUT_LIST.push(o.generated_text)
  // })
  
  // alternate format for parsing, for chat model type
  // await out.choices.forEach(o => {
  //   console.log(o)
  //   OUTPUT_LIST.push(o.message.content)
  // })

  let OUTPUT_LIST = out[0].generated_text //not a list anymore just one result
  // OUTPUT_LIST.push(out[0].generated_text)

  console.log(OUTPUT_LIST)
  console.log('text-gen parsing complete')

  return await OUTPUT_LIST
  // return await out
}

// RUN FILL-IN MODEL
async function fillInTask(input){
  console.log('fill-in task initiated')

  // MODELS LIST
  // - Xenova/bert-base-uncased

  const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased');
  
  var out = await pipe(input);

  console.log(await out) // yields { score, sequence, token, token_str } for each result

  let OUTPUT_LIST = [] // a blank array to store the results from the model

  // parsing of output
  await out.forEach(o => {
    console.log(o) // yields { score, sequence, token, token_str } for each result
    OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list
  })
  
  console.log(await OUTPUT_LIST)
  console.log('fill-in task completed')

  // return await out
  return await OUTPUT_LIST
}

//// p5.js Instance

new p5(function (p5){
  p5.setup = function(){
      p5.noCanvas()
      console.log('p5 instance loaded')
      makeTextDisplay()
      makeFields()
      makeButtons()
    }

  p5.draw = function(){
      // 
  }

  function makeTextDisplay(){
    const title = p5.createElement('h1','p5.js Critical AI Prompt Battle')
    const intro = p5.createP(`This tool lets you explore several AI prompts results at once.`) 
    p5.createP(`Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`)
  }

  function makeFields(){
    promptField = p5.createInput(PROMPT_INPUT) // turns the string into an input; now access the text via PROMPT_INPUT.value()
    promptField.size(700)
    promptField.attribute('label', `Write a text prompt with one [MASK] that the model will fill in.`)
    p5.createP(promptField.attribute('label'))
    promptField.addClass("prompt")

    const fieldsDiv = p5.createDiv()
    fieldsDiv.id('fieldsDiv')

    addField()
  }

  function makeButtons(){
    // press to run model
    const submitButton = p5.createButton("SUBMIT")
    submitButton.size(170)
    submitButton.class('submit')
    submitButton.mousePressed(displayResults)

    // press to add more blanks to fill in
    const addButton = p5.createButton("more blanks")
    addButton.size(170)
    // addButton.position(220,500)
    addButton.mousePressed(addField)
    
    // also make results placeholder
    const outHeader = p5.createElement('h3',"Results")
    outText = p5.createP('').id('results')
  }

  async function displayResults(){
    console.log('submitButton pressed')

    // insert waiting dots into results space of interface
    outText.html('...', false)

    // GRAB CURRENT FIELD INPUTS FROM PROMPT & BLANKS
    PROMPT_INPUT = promptField.value() // grab update to the prompt if it's been changed
    console.log("latest prompt: ", PROMPT_INPUT)

    let blanksValues = []
    blanksArray.forEach(b => {
      blanksValues.push(b.value())
    })
    console.log(blanksValues)
    // let blanksValues = blanksArray.map(b => b.value)    
    
    // call the function that runs the model for the task of your choice here 
    // make sure to use the PROMPT_INPUT as a parameter, or also the PREPROMPT if valid for that task
    let outs = await textGenTask(PREPROMPT, PROMPT_INPUT, blanksValues)
    console.log(outs)

    // insert the model outputs into the paragraph
    await outText.html(outs, false) // false replaces text instead of appends
  }

  function addField(){
      let f = p5.createInput("")
      f.class("blank")
      f.parent("#fieldsDiv")

      blanksArray.push(f)
      console.log("made variable field")
      
      // Cap the number of fields, avoids token limit in prompt
      let blanks = document.querySelectorAll(".blank")
      if (blanks.length > 5){
          console.log(blanks.length)
          addButton.style('visibility','hidden')
      }
  }
  
});