|
import streamlit as st |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import tempfile |
|
|
|
|
|
model_name = "oyqiz/uzbek_stt" |
|
processor = Wav2Vec2Processor.from_pretrained(model_name) |
|
model = Wav2Vec2ForCTC.from_pretrained(model_name) |
|
|
|
|
|
st.title("Ovozni matnga o'girish") |
|
st.write("Audio faylingizni yuklang:") |
|
|
|
|
|
uploaded_file = st.file_uploader("Audio faylingizni tanlang...", type=["wav", "mp3", "ogg"]) |
|
|
|
def transcribe_audio(audio_file): |
|
waveform, sample_rate = torchaudio.load(audio_file) |
|
if sample_rate != 16000: |
|
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform) |
|
sample_rate = 16000 |
|
input_values = processor(waveform, sampling_rate=sample_rate, return_tensors="pt").input_values |
|
with torch.no_grad(): |
|
input_values = input_values.squeeze(1) |
|
logits = model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids)[0] |
|
return transcription |
|
|
|
if uploaded_file is not None: |
|
|
|
with tempfile.NamedTemporaryFile(delete=False) as tmp_file: |
|
tmp_file.write(uploaded_file.read()) |
|
tmp_file_path = tmp_file.name |
|
|
|
|
|
transcription = transcribe_audio(tmp_file_path) |
|
|
|
st.write("Natija:") |
|
st.write(transcription) |
|
|