Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,41 +3,56 @@ import tensorflow as tf
|
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
-
|
| 7 |
model = tf.saved_model.load('saved_model/embryo_classifier')
|
| 8 |
|
| 9 |
-
|
| 10 |
IMG_SIZE = (300, 300)
|
| 11 |
|
| 12 |
-
|
| 13 |
def preprocess_image(image):
|
| 14 |
-
image = image.resize(IMG_SIZE, Image.LANCZOS)
|
| 15 |
inp_numpy = np.array(image)[None]
|
| 16 |
inp = tf.constant(inp_numpy, dtype='float32')
|
| 17 |
return inp
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
st.title("Embryo Quality Assessment")
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
st.write("Upload an embryo image to classify its quality.")
|
| 23 |
|
| 24 |
-
# File uploader
|
| 25 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 26 |
|
| 27 |
if uploaded_file is not None:
|
| 28 |
image = Image.open(uploaded_file).convert('RGB')
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
st.write("Classifying...")
|
| 32 |
|
| 33 |
-
|
| 34 |
processed_image = preprocess_image(image)
|
| 35 |
|
| 36 |
-
|
| 37 |
class_scores = model(processed_image)[0].numpy()
|
| 38 |
predicted_class = class_scores.argmax()
|
| 39 |
|
| 40 |
-
|
| 41 |
classes = ['Low Quality', 'Medium Quality', 'High Quality'] # Adjust according to your classes
|
| 42 |
-
st.write(f"Prediction
|
| 43 |
-
st.write(f"Confidence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
+
|
| 7 |
model = tf.saved_model.load('saved_model/embryo_classifier')
|
| 8 |
|
| 9 |
+
|
| 10 |
IMG_SIZE = (300, 300)
|
| 11 |
|
| 12 |
+
|
| 13 |
def preprocess_image(image):
|
| 14 |
+
image = image.resize(IMG_SIZE, Image.LANCZOS)
|
| 15 |
inp_numpy = np.array(image)[None]
|
| 16 |
inp = tf.constant(inp_numpy, dtype='float32')
|
| 17 |
return inp
|
| 18 |
|
| 19 |
+
|
| 20 |
+
st.set_page_config(page_title="Embryo Quality Assessment", layout="wide")
|
| 21 |
+
|
| 22 |
st.title("Embryo Quality Assessment")
|
| 23 |
+
st.write("""
|
| 24 |
+
Upload an embryo image to classify its quality. The model will predict the quality of the embryo as either Low, Medium, or High.
|
| 25 |
+
""")
|
| 26 |
|
|
|
|
| 27 |
|
|
|
|
| 28 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 29 |
|
| 30 |
if uploaded_file is not None:
|
| 31 |
image = Image.open(uploaded_file).convert('RGB')
|
| 32 |
+
resized_image = image.resize((150, 150))
|
| 33 |
+
st.image(resized_image, caption='Uploaded Image.', use_column_width=False)
|
| 34 |
|
| 35 |
st.write("Classifying...")
|
| 36 |
|
| 37 |
+
|
| 38 |
processed_image = preprocess_image(image)
|
| 39 |
|
| 40 |
+
|
| 41 |
class_scores = model(processed_image)[0].numpy()
|
| 42 |
predicted_class = class_scores.argmax()
|
| 43 |
|
| 44 |
+
|
| 45 |
classes = ['Low Quality', 'Medium Quality', 'High Quality'] # Adjust according to your classes
|
| 46 |
+
st.write(f"**Prediction:** {classes[predicted_class]}")
|
| 47 |
+
st.write(f"**Confidence:** {np.max(class_scores) * 100:.2f}%")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
st.write("**Confidence scores for all classes:**")
|
| 51 |
+
for i, score in enumerate(class_scores):
|
| 52 |
+
st.write(f"{classes[i]}: {score * 100:.2f}%")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
st.markdown("""
|
| 56 |
+
---
|
| 57 |
+
*Created by [Your Name](https://your-link.com)*
|
| 58 |
+
""")
|