Spaces:
Runtime error
Runtime error
from typing import Literal | |
from diffusers import StableDiffusionPipeline | |
from dotenv import load_dotenv | |
import torch | |
import time | |
import os | |
import io | |
import requests | |
from PIL import Image | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
seed = 2024 | |
generator = torch.manual_seed(seed) | |
NUM_ITERS_TO_RUN = 1 | |
NUM_INFERENCE_STEPS = 25 | |
NUM_IMAGES_PER_PROMPT = 1 | |
# Add your hugging face hub token here. | |
#os.environ['HUGGINGFACEHUB_API_TOKEN'] = '' | |
def text2image( | |
prompt: str, | |
repo_id: Literal[ | |
"prithivMLmods/Canopus-Realism-LoRA", | |
"black-forest-labs/FLUX.1-dev", | |
"SG161222/RealVisXL_V4.0_Lightning", | |
"prompthero/openjourney", | |
"stabilityai/stable-diffusion-2-1", | |
"runwayml/stable-diffusion-v1-5", | |
"SG161222/RealVisXL_V3.0", | |
"CompVis/stable-diffusion-v1-4", | |
], | |
): | |
start = time.time() | |
load_dotenv() | |
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
API_URL = f"https://api-inference.huggingface.co/models/{repo_id}" | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
payload = {"inputs":prompt} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
upscaled_image = image.resize((2048,2048)) | |
end = time.time() | |
return upscaled_image, start, end | |