from dotenv import load_dotenv load_dotenv() import streamlit as st import os from PIL import Image import google.generativeai as genai genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Load Gemini pro Vision model = genai.GenerativeModel('gemini-pro-vision') def get_gemini_response(input,image,prompt): response = model.generate_content([input,image[0],prompt]) return response.text def input_image(uploaded_file): if uploaded_file is not None: bytes_data = uploaded_file.getvalue() image_parts = [ { "mime_type":uploaded_file.type, "data":bytes_data } ] return image_parts else: raise FileNotFoundError("No file uploaded") # Streamlit st.set_page_config(page_title="Extractor",page_icon=":100:") st.header("Quick Info") st.subheader("Extract information from images") input = st.text_input("Input prompt :",key="input") uploaded_file = st.file_uploader("Choose an image ...",type=["jpg","jpeg","png"]) image = "" if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image,caption="Uploaded Image",use_column_width=True) submit = st.button("Tell me about the image") input_prompt = """ You are an expert in understanding images. We will upload an image and you will have to answer any question based on the uploaded image """ if submit: image_data = input_image(uploaded_file) response = get_gemini_response(input,image_data,input_prompt) st.subheader("The response :") st.write(response)