Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -16,187 +16,61 @@ import joblib
|
|
16 |
import base64
|
17 |
from werkzeug.utils import secure_filename
|
18 |
import tempfile
|
19 |
-
# HTML template with embedded JavaScript
|
20 |
-
HTML_TEMPLATE = """
|
21 |
-
<!DOCTYPE html>
|
22 |
-
<html lang="en">
|
23 |
-
<head>
|
24 |
-
<meta charset="UTF-8">
|
25 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
26 |
-
<title>Document Processor</title>
|
27 |
-
<script src="https://cdn.tailwindcss.com"></script>
|
28 |
-
<style>
|
29 |
-
/* Additional custom styles can go here */
|
30 |
-
.processing {
|
31 |
-
animation: pulse 2s infinite;
|
32 |
-
}
|
33 |
-
@keyframes pulse {
|
34 |
-
0% { opacity: 1; }
|
35 |
-
50% { opacity: 0.5; }
|
36 |
-
100% { opacity: 1; }
|
37 |
-
}
|
38 |
-
</style>
|
39 |
-
</head>
|
40 |
-
<body class="bg-gray-50">
|
41 |
-
<div class="container mx-auto p-6 max-w-4xl">
|
42 |
-
<div class="mb-8">
|
43 |
-
<h1 class="text-3xl font-bold mb-2">Smart Document Processor</h1>
|
44 |
-
<p class="text-gray-600">Upload and analyze PDF documents with AI</p>
|
45 |
-
</div>
|
46 |
-
|
47 |
-
<!-- Upload Section -->
|
48 |
-
<div class="mb-8">
|
49 |
-
<div id="dropZone" class="border-2 border-dashed border-gray-300 rounded-lg p-8 text-center hover:border-blue-500 transition-colors">
|
50 |
-
<input type="file" multiple accept=".pdf" id="fileInput" class="hidden">
|
51 |
-
<div class="cursor-pointer">
|
52 |
-
<svg class="w-12 h-12 text-gray-400 mx-auto mb-4" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke="currentColor">
|
53 |
-
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M7 16a4 4 0 01-.88-7.903A5 5 0 1115.9 6L16 6a5 5 0 011 9.9M15 13l-3-3m0 0l-3 3m3-3v12"/>
|
54 |
-
</svg>
|
55 |
-
<span class="text-lg mb-2 block">Drop PDFs here or click to upload</span>
|
56 |
-
<span class="text-sm text-gray-500">Supports multiple files</span>
|
57 |
-
</div>
|
58 |
-
</div>
|
59 |
-
</div>
|
60 |
-
|
61 |
-
<!-- File List -->
|
62 |
-
<div id="fileList" class="mb-8 hidden">
|
63 |
-
<h2 class="text-xl font-semibold mb-4">Selected Files</h2>
|
64 |
-
<div id="fileListContent" class="space-y-2"></div>
|
65 |
-
<button id="processButton" class="mt-4 bg-blue-600 text-white px-6 py-2 rounded-lg hover:bg-blue-700 disabled:opacity-50">
|
66 |
-
Process Documents
|
67 |
-
</button>
|
68 |
-
</div>
|
69 |
-
|
70 |
-
<!-- Results Section -->
|
71 |
-
<div id="results" class="space-y-4"></div>
|
72 |
-
|
73 |
-
<!-- Error Alert -->
|
74 |
-
<div id="error" class="hidden mt-4 bg-red-100 border border-red-400 text-red-700 px-4 py-3 rounded"></div>
|
75 |
-
</div>
|
76 |
-
|
77 |
-
<script>
|
78 |
-
let files = [];
|
79 |
-
const dropZone = document.getElementById('dropZone');
|
80 |
-
const fileInput = document.getElementById('fileInput');
|
81 |
-
const fileList = document.getElementById('fileList');
|
82 |
-
const fileListContent = document.getElementById('fileListContent');
|
83 |
-
const processButton = document.getElementById('processButton');
|
84 |
-
const resultsDiv = document.getElementById('results');
|
85 |
-
const errorDiv = document.getElementById('error');
|
86 |
-
|
87 |
-
// Drag and drop handlers
|
88 |
-
dropZone.addEventListener('dragover', (e) => {
|
89 |
-
e.preventDefault();
|
90 |
-
dropZone.classList.add('border-blue-500');
|
91 |
-
});
|
92 |
-
|
93 |
-
dropZone.addEventListener('dragleave', () => {
|
94 |
-
dropZone.classList.remove('border-blue-500');
|
95 |
-
});
|
96 |
-
|
97 |
-
dropZone.addEventListener('drop', (e) => {
|
98 |
-
e.preventDefault();
|
99 |
-
dropZone.classList.remove('border-blue-500');
|
100 |
-
handleFiles(e.dataTransfer.files);
|
101 |
-
});
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
}
|
115 |
-
|
116 |
-
function updateFileList() {
|
117 |
-
if (files.length > 0) {
|
118 |
-
fileList.classList.remove('hidden');
|
119 |
-
fileListContent.innerHTML = files.map((file, index) => `
|
120 |
-
<div class="flex items-center p-3 bg-gray-50 rounded">
|
121 |
-
<svg class="w-5 h-5 text-gray-500 mr-3" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke="currentColor">
|
122 |
-
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M9 12h6m-6 4h6m2 5H7a2 2 0 01-2-2V5a2 2 0 012-2h5.586a1 1 0 01.707.293l5.414 5.414a1 1 0 01.293.707V19a2 2 0 01-2 2z"/>
|
123 |
-
</svg>
|
124 |
-
<span>${file.name}</span>
|
125 |
-
</div>
|
126 |
-
`).join('');
|
127 |
-
} else {
|
128 |
-
fileList.classList.add('hidden');
|
129 |
-
}
|
130 |
}
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
<svg class="animate-spin -ml-1 mr-3 h-5 w-5 text-white inline" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24">
|
138 |
-
<circle class="opacity-25" cx="12" cy="12" r="10" stroke="currentColor" stroke-width="4"></circle>
|
139 |
-
<path class="opacity-75" fill="currentColor" d="M4 12a8 8 0 018-8V0C5.373 0 0 5.373 0 12h4zm2 5.291A7.962 7.962 0 014 12H0c0 3.042 1.135 5.824 3 7.938l3-2.647z"></path>
|
140 |
-
</svg>
|
141 |
-
Processing...
|
142 |
-
`;
|
143 |
-
|
144 |
-
const formData = new FormData();
|
145 |
-
files.forEach(file => {
|
146 |
-
formData.append('files[]', file);
|
147 |
-
});
|
148 |
-
|
149 |
-
try {
|
150 |
-
const response = await fetch('/batch_process', {
|
151 |
-
method: 'POST',
|
152 |
-
body: formData
|
153 |
-
});
|
154 |
-
|
155 |
-
const data = await response.json();
|
156 |
-
displayResults(data);
|
157 |
-
errorDiv.classList.add('hidden');
|
158 |
-
} catch (error) {
|
159 |
-
errorDiv.textContent = 'Failed to process documents. Please try again.';
|
160 |
-
errorDiv.classList.remove('hidden');
|
161 |
-
} finally {
|
162 |
-
processButton.disabled = false;
|
163 |
-
processButton.textContent = 'Process Documents';
|
164 |
-
}
|
165 |
-
});
|
166 |
-
|
167 |
-
function displayResults(results) {
|
168 |
-
resultsDiv.innerHTML = results.map(result => `
|
169 |
-
<div class="border rounded-lg p-4 bg-white shadow-sm">
|
170 |
-
<h3 class="font-medium mb-2">${result.result.filename}</h3>
|
171 |
-
<div class="grid grid-cols-2 gap-4">
|
172 |
-
<div>
|
173 |
-
<span class="text-gray-600">Type:</span>
|
174 |
-
<span class="ml-2">${result.result.doc_type}</span>
|
175 |
-
</div>
|
176 |
-
<div>
|
177 |
-
<span class="text-gray-600">Date:</span>
|
178 |
-
<span class="ml-2">${result.result.date || 'N/A'}</span>
|
179 |
-
</div>
|
180 |
-
<div>
|
181 |
-
<span class="text-gray-600">Amount:</span>
|
182 |
-
<span class="ml-2">${result.result.amount ? '$' + result.result.amount.toFixed(2) : 'N/A'}</span>
|
183 |
-
</div>
|
184 |
-
<div>
|
185 |
-
<span class="text-gray-600">Person:</span>
|
186 |
-
<span class="ml-2">${result.result.person_name}</span>
|
187 |
-
</div>
|
188 |
-
</div>
|
189 |
-
</div>
|
190 |
-
`).join('');
|
191 |
}
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
class MLDocumentClassifier:
|
198 |
def __init__(self):
|
199 |
-
self.labels = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
self.classifier = Pipeline([
|
201 |
('tfidf', TfidfVectorizer(ngram_range=(1, 2), stop_words='english', max_features=10000)),
|
202 |
('clf', MultinomialNB())
|
@@ -209,13 +83,15 @@ class MLDocumentClassifier:
|
|
209 |
def _rule_based_classify(self, text):
|
210 |
text_lower = text.lower()
|
211 |
rules = [
|
212 |
-
('
|
213 |
-
('
|
214 |
-
('
|
215 |
-
('
|
216 |
-
('
|
217 |
-
('
|
218 |
-
('
|
|
|
|
|
219 |
]
|
220 |
|
221 |
scores = []
|
@@ -231,22 +107,33 @@ class EnhancedDocProcessor:
|
|
231 |
self.conn = sqlite3.connect(':memory:', check_same_thread=False)
|
232 |
self.setup_database()
|
233 |
self.classifier = MLDocumentClassifier()
|
|
|
234 |
|
235 |
def setup_database(self):
|
236 |
self.conn.executescript('''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
CREATE TABLE IF NOT EXISTS documents (
|
238 |
id INTEGER PRIMARY KEY,
|
239 |
filename TEXT,
|
240 |
doc_type TEXT,
|
241 |
-
|
242 |
amount REAL,
|
243 |
date TEXT,
|
244 |
account_number TEXT,
|
245 |
raw_text TEXT,
|
246 |
processed_date TEXT,
|
247 |
file_hash TEXT,
|
248 |
-
|
249 |
-
|
250 |
);
|
251 |
|
252 |
CREATE TABLE IF NOT EXISTS similar_docs (
|
@@ -273,29 +160,58 @@ class EnhancedDocProcessor:
|
|
273 |
return f"Error extracting text: {str(e)}"
|
274 |
|
275 |
def extract_metadata(self, text: str) -> Dict:
|
276 |
-
|
277 |
'amount': next((float(amt.replace('$','').replace(',',''))
|
278 |
for amt in re.findall(r'\$[\d,]+\.?\d*', text)), 0.0),
|
279 |
'date': next(iter(re.findall(r'\d{1,2}/\d{1,2}/\d{4}', text)), None),
|
280 |
'account_number': next(iter(re.findall(r'Account\s*#?\s*:?\s*(\d{8,12})', text)), None),
|
281 |
-
'person_name': next(iter(re.findall(r'(?:Mr\.|Mrs\.|Ms\.|Dr\.)\s+([A-Z][a-z]+\s+[A-Z][a-z]+)', text)), "Unknown")
|
282 |
}
|
|
|
283 |
|
284 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
text = self.extract_text(pdf_path)
|
286 |
doc_type = self.classifier.predict(text)
|
287 |
metadata = self.extract_metadata(text)
|
|
|
|
|
288 |
|
289 |
cursor = self.conn.execute('''
|
290 |
INSERT INTO documents
|
291 |
-
(filename, doc_type,
|
292 |
-
account_number, raw_text, processed_date,
|
293 |
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
294 |
''', (
|
295 |
-
filename, doc_type,
|
296 |
metadata['amount'], metadata['date'],
|
297 |
metadata['account_number'], text,
|
298 |
-
datetime.now().isoformat(),
|
299 |
))
|
300 |
|
301 |
doc_id = cursor.lastrowid
|
@@ -305,19 +221,22 @@ class EnhancedDocProcessor:
|
|
305 |
'id': doc_id,
|
306 |
'filename': filename,
|
307 |
'doc_type': doc_type,
|
|
|
308 |
**metadata
|
309 |
}
|
310 |
|
311 |
-
def process_batch(self, file_paths: List[str]
|
312 |
results = []
|
313 |
for file_path in file_paths:
|
314 |
try:
|
315 |
-
result = self.process_document(file_path, os.path.basename(file_path)
|
316 |
results.append({"status": "success", "result": result, "file": file_path})
|
317 |
except Exception as e:
|
318 |
results.append({"status": "error", "error": str(e), "file": file_path})
|
319 |
return results
|
320 |
|
|
|
|
|
321 |
app = Flask(__name__)
|
322 |
processor = EnhancedDocProcessor()
|
323 |
|
@@ -331,25 +250,20 @@ def batch_process():
|
|
331 |
return jsonify({'error': 'No files uploaded'}), 400
|
332 |
|
333 |
files = request.files.getlist('files[]')
|
334 |
-
user_id = request.form.get('user_id')
|
335 |
|
336 |
-
# Create a temporary directory
|
337 |
with tempfile.TemporaryDirectory() as temp_dir:
|
338 |
file_paths = []
|
339 |
for file in files:
|
340 |
if file.filename.endswith('.pdf'):
|
341 |
-
# Create a secure filename
|
342 |
secure_name = secure_filename(file.filename)
|
343 |
-
# Create full path in temporary directory
|
344 |
temp_path = os.path.join(temp_dir, secure_name)
|
345 |
file.save(temp_path)
|
346 |
file_paths.append(temp_path)
|
347 |
|
348 |
try:
|
349 |
-
results = processor.process_batch(file_paths
|
350 |
except Exception as e:
|
351 |
return jsonify({'error': str(e)}), 500
|
352 |
-
# No need to manually clean up - TemporaryDirectory does it automatically
|
353 |
|
354 |
return jsonify(results)
|
355 |
|
|
|
16 |
import base64
|
17 |
from werkzeug.utils import secure_filename
|
18 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
class PersonIdentifier:
|
21 |
+
def __init__(self):
|
22 |
+
self.name_patterns = [
|
23 |
+
r'(?:Mr\.|Mrs\.|Ms\.|Dr\.)\s+([A-Z][a-z]+\s+[A-Z][a-z]+)',
|
24 |
+
r'Name:?\s*([A-Z][a-z]+\s+[A-Z][a-z]+)',
|
25 |
+
r'([A-Z][a-z]+\s+[A-Z][a-z]+)'
|
26 |
+
]
|
27 |
+
self.id_patterns = {
|
28 |
+
'ssn': r'(?!000|666|9\d{2})\d{3}-(?!00)\d{2}-(?!0000)\d{4}',
|
29 |
+
'drivers_license': r'[A-Z]\d{7}',
|
30 |
+
'passport': r'[A-Z]\d{8}',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
32 |
+
self.email_pattern = r'[\w\.-]+@[\w\.-]+\.\w+'
|
33 |
|
34 |
+
def identify_person(self, text: str) -> Dict:
|
35 |
+
person_data = {
|
36 |
+
'name': None,
|
37 |
+
'id_numbers': {},
|
38 |
+
'email': None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
+
|
41 |
+
# Extract name
|
42 |
+
for pattern in self.name_patterns:
|
43 |
+
names = re.findall(pattern, text)
|
44 |
+
if names:
|
45 |
+
person_data['name'] = names[0]
|
46 |
+
break
|
47 |
+
|
48 |
+
# Extract IDs
|
49 |
+
for id_type, pattern in self.id_patterns.items():
|
50 |
+
ids = re.findall(pattern, text)
|
51 |
+
if ids:
|
52 |
+
person_data['id_numbers'][id_type] = ids[0]
|
53 |
+
|
54 |
+
# Extract email
|
55 |
+
emails = re.findall(self.email_pattern, text)
|
56 |
+
if emails:
|
57 |
+
person_data['email'] = emails[0]
|
58 |
+
|
59 |
+
return person_data
|
60 |
|
61 |
class MLDocumentClassifier:
|
62 |
def __init__(self):
|
63 |
+
self.labels = [
|
64 |
+
'BankApplication_CreditCard',
|
65 |
+
'BankApplication_SavingsAccount',
|
66 |
+
'ID_DriversLicense',
|
67 |
+
'ID_Passport',
|
68 |
+
'ID_StateID',
|
69 |
+
'Financial_PayStub',
|
70 |
+
'Financial_TaxReturn',
|
71 |
+
'Financial_IncomeStatement',
|
72 |
+
'Receipt'
|
73 |
+
]
|
74 |
self.classifier = Pipeline([
|
75 |
('tfidf', TfidfVectorizer(ngram_range=(1, 2), stop_words='english', max_features=10000)),
|
76 |
('clf', MultinomialNB())
|
|
|
83 |
def _rule_based_classify(self, text):
|
84 |
text_lower = text.lower()
|
85 |
rules = [
|
86 |
+
('BankApplication_CreditCard', ['credit card application', 'card request', 'new card']),
|
87 |
+
('BankApplication_SavingsAccount', ['savings account', 'open account', 'new account']),
|
88 |
+
('ID_DriversLicense', ['driver license', 'driving permit', 'operator license']),
|
89 |
+
('ID_Passport', ['passport', 'travel document']),
|
90 |
+
('ID_StateID', ['state id', 'identification card']),
|
91 |
+
('Financial_PayStub', ['pay stub', 'salary', 'wages']),
|
92 |
+
('Financial_TaxReturn', ['tax return', 'form 1040', 'tax year']),
|
93 |
+
('Financial_IncomeStatement', ['income statement', 'earnings report']),
|
94 |
+
('Receipt', ['receipt', 'payment received', 'transaction record'])
|
95 |
]
|
96 |
|
97 |
scores = []
|
|
|
107 |
self.conn = sqlite3.connect(':memory:', check_same_thread=False)
|
108 |
self.setup_database()
|
109 |
self.classifier = MLDocumentClassifier()
|
110 |
+
self.person_identifier = PersonIdentifier()
|
111 |
|
112 |
def setup_database(self):
|
113 |
self.conn.executescript('''
|
114 |
+
CREATE TABLE IF NOT EXISTS persons (
|
115 |
+
id INTEGER PRIMARY KEY,
|
116 |
+
name TEXT,
|
117 |
+
email TEXT,
|
118 |
+
ssn TEXT,
|
119 |
+
drivers_license TEXT,
|
120 |
+
passport TEXT,
|
121 |
+
created_date TEXT
|
122 |
+
);
|
123 |
+
|
124 |
CREATE TABLE IF NOT EXISTS documents (
|
125 |
id INTEGER PRIMARY KEY,
|
126 |
filename TEXT,
|
127 |
doc_type TEXT,
|
128 |
+
person_id INTEGER,
|
129 |
amount REAL,
|
130 |
date TEXT,
|
131 |
account_number TEXT,
|
132 |
raw_text TEXT,
|
133 |
processed_date TEXT,
|
134 |
file_hash TEXT,
|
135 |
+
confidence_score REAL,
|
136 |
+
FOREIGN KEY (person_id) REFERENCES persons (id)
|
137 |
);
|
138 |
|
139 |
CREATE TABLE IF NOT EXISTS similar_docs (
|
|
|
160 |
return f"Error extracting text: {str(e)}"
|
161 |
|
162 |
def extract_metadata(self, text: str) -> Dict:
|
163 |
+
metadata = {
|
164 |
'amount': next((float(amt.replace('$','').replace(',',''))
|
165 |
for amt in re.findall(r'\$[\d,]+\.?\d*', text)), 0.0),
|
166 |
'date': next(iter(re.findall(r'\d{1,2}/\d{1,2}/\d{4}', text)), None),
|
167 |
'account_number': next(iter(re.findall(r'Account\s*#?\s*:?\s*(\d{8,12})', text)), None),
|
|
|
168 |
}
|
169 |
+
return metadata
|
170 |
|
171 |
+
def get_or_create_person(self, person_data: Dict) -> int:
|
172 |
+
cursor = self.conn.execute(
|
173 |
+
'SELECT id FROM persons WHERE name = ? OR email = ? OR ssn = ? OR drivers_license = ? OR passport = ?',
|
174 |
+
(person_data['name'], person_data.get('email'),
|
175 |
+
person_data.get('id_numbers', {}).get('ssn'),
|
176 |
+
person_data.get('id_numbers', {}).get('drivers_license'),
|
177 |
+
person_data.get('id_numbers', {}).get('passport'))
|
178 |
+
)
|
179 |
+
result = cursor.fetchone()
|
180 |
+
|
181 |
+
if result:
|
182 |
+
return result[0]
|
183 |
+
|
184 |
+
cursor = self.conn.execute('''
|
185 |
+
INSERT INTO persons (name, email, ssn, drivers_license, passport, created_date)
|
186 |
+
VALUES (?, ?, ?, ?, ?, ?)
|
187 |
+
''', (
|
188 |
+
person_data['name'],
|
189 |
+
person_data.get('email'),
|
190 |
+
person_data.get('id_numbers', {}).get('ssn'),
|
191 |
+
person_data.get('id_numbers', {}).get('drivers_license'),
|
192 |
+
person_data.get('id_numbers', {}).get('passport'),
|
193 |
+
datetime.now().isoformat()
|
194 |
+
))
|
195 |
+
self.conn.commit()
|
196 |
+
return cursor.lastrowid
|
197 |
+
|
198 |
+
def process_document(self, pdf_path: str, filename: str) -> Dict:
|
199 |
text = self.extract_text(pdf_path)
|
200 |
doc_type = self.classifier.predict(text)
|
201 |
metadata = self.extract_metadata(text)
|
202 |
+
person_data = self.person_identifier.identify_person(text)
|
203 |
+
person_id = self.get_or_create_person(person_data)
|
204 |
|
205 |
cursor = self.conn.execute('''
|
206 |
INSERT INTO documents
|
207 |
+
(filename, doc_type, person_id, amount, date,
|
208 |
+
account_number, raw_text, processed_date, confidence_score)
|
209 |
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
210 |
''', (
|
211 |
+
filename, doc_type, person_id,
|
212 |
metadata['amount'], metadata['date'],
|
213 |
metadata['account_number'], text,
|
214 |
+
datetime.now().isoformat(), 0.85
|
215 |
))
|
216 |
|
217 |
doc_id = cursor.lastrowid
|
|
|
221 |
'id': doc_id,
|
222 |
'filename': filename,
|
223 |
'doc_type': doc_type,
|
224 |
+
'person': person_data,
|
225 |
**metadata
|
226 |
}
|
227 |
|
228 |
+
def process_batch(self, file_paths: List[str]) -> List[Dict]:
|
229 |
results = []
|
230 |
for file_path in file_paths:
|
231 |
try:
|
232 |
+
result = self.process_document(file_path, os.path.basename(file_path))
|
233 |
results.append({"status": "success", "result": result, "file": file_path})
|
234 |
except Exception as e:
|
235 |
results.append({"status": "error", "error": str(e), "file": file_path})
|
236 |
return results
|
237 |
|
238 |
+
# [Previous HTML_TEMPLATE remains the same]
|
239 |
+
|
240 |
app = Flask(__name__)
|
241 |
processor = EnhancedDocProcessor()
|
242 |
|
|
|
250 |
return jsonify({'error': 'No files uploaded'}), 400
|
251 |
|
252 |
files = request.files.getlist('files[]')
|
|
|
253 |
|
|
|
254 |
with tempfile.TemporaryDirectory() as temp_dir:
|
255 |
file_paths = []
|
256 |
for file in files:
|
257 |
if file.filename.endswith('.pdf'):
|
|
|
258 |
secure_name = secure_filename(file.filename)
|
|
|
259 |
temp_path = os.path.join(temp_dir, secure_name)
|
260 |
file.save(temp_path)
|
261 |
file_paths.append(temp_path)
|
262 |
|
263 |
try:
|
264 |
+
results = processor.process_batch(file_paths)
|
265 |
except Exception as e:
|
266 |
return jsonify({'error': str(e)}), 500
|
|
|
267 |
|
268 |
return jsonify(results)
|
269 |
|