Spaces:
Sleeping
Sleeping
Commit
Β·
45bfcc4
1
Parent(s):
8d9d2f1
Added summary and ATS
Browse files- .env +1 -0
- __pycache__/ats1.cpython-39.pyc +0 -0
- __pycache__/blog.cpython-39.pyc +0 -0
- __pycache__/blogger.cpython-39.pyc +0 -0
- __pycache__/gist.cpython-39.pyc +0 -0
- app.py +38 -102
- ats.py +96 -0
- ats1.py +118 -0
- blogger.py +118 -0
- gist.py +121 -0
- requirements.txt +7 -1
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
GOOGLE_API_KEY=AIzaSyAA59xkxMEUqffuaNMzrTxK6m5AJpY3tCw
|
__pycache__/ats1.cpython-39.pyc
ADDED
Binary file (4.9 kB). View file
|
|
__pycache__/blog.cpython-39.pyc
ADDED
Binary file (4.92 kB). View file
|
|
__pycache__/blogger.cpython-39.pyc
ADDED
Binary file (5.04 kB). View file
|
|
__pycache__/gist.cpython-39.pyc
ADDED
Binary file (4.98 kB). View file
|
|
app.py
CHANGED
@@ -1,114 +1,50 @@
|
|
1 |
-
|
2 |
-
import pyperclip
|
3 |
import streamlit as st
|
4 |
-
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
14 |
-
return ChatGoogleGenerativeAI(model="gemini-pro")
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
"""
|
21 |
-
prompt=PromptTemplate(input_variables=['tone','lang',"blog_style","input_text",'no_words', "info"],
|
22 |
-
template=template)
|
23 |
-
formated_prompt = prompt.format(tone=tone,lang=lang,blog_style=blog_style,input_text=input_text,no_words=no_words,info=info)
|
24 |
-
## Generate the ressponse from the LLama 2 model
|
25 |
-
response=llm.invoke(formated_prompt)
|
26 |
-
return response.content
|
27 |
|
28 |
-
|
29 |
-
pyperclip.copy(answer)
|
30 |
-
if copy_button:
|
31 |
-
st.toast("Text copied to clipboard!", icon="π")
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
with st.spinner("Say Something..."):
|
39 |
-
audio = r.listen(source, timeout=5) # Set a timeout for listening
|
40 |
-
with st.spinner("Processing..."):
|
41 |
-
# Attempt speech recognition
|
42 |
-
try:
|
43 |
-
text = r.recognize_google(audio)
|
44 |
-
st.session_state['input_text'] = text
|
45 |
-
return text
|
46 |
-
except sr.UnknownValueError:
|
47 |
-
st.write("Sorry, I could not understand what you said. Please try again or write in text box.")
|
48 |
-
return ""
|
49 |
-
except sr.RequestError as e:
|
50 |
-
st.write(f"Could not request results; {e}")
|
51 |
-
return ""
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
st.session_state['input_text'] = input_text # Update st.session_state with new text input
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
st.set_page_config(page_title="AI-Blogger",
|
60 |
-
page_icon='π€',
|
61 |
-
layout='centered' )
|
62 |
-
|
63 |
-
st.header("AI Blogger π€", divider='rainbow')
|
64 |
-
hide_streamlit_style = """
|
65 |
-
<style>
|
66 |
-
#MainMenu {visibility: hidden;}
|
67 |
-
footer {visibility: hidden;}
|
68 |
-
</style>
|
69 |
-
|
70 |
-
"""
|
71 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
72 |
-
#? Make it False in DEV Mode
|
73 |
-
button_disabled = True
|
74 |
-
# Button with info hover
|
75 |
-
if button_disabled:
|
76 |
-
st.toast("Mic Button is disabled in production. HF Don't have Audio Device")
|
77 |
-
|
78 |
-
col1,col2=st.columns([20,3])
|
79 |
-
with col1:
|
80 |
-
st.write('')
|
81 |
-
text = st.empty()
|
82 |
-
input_text = text.text_input("Enter the Blog Topic")
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
if recorded_text:
|
91 |
-
input_text = text.text_input("Enter the Blog Topic",value=recorded_text)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
# Refactored from <https://github.com/a16z-infra/llama2-chatbot>
|
96 |
-
st.subheader('Parameters')
|
97 |
-
no_words = st.sidebar.slider('Maximum Characters', min_value=10, max_value=5000, value=1000, step=100)
|
98 |
-
blog_style=st.selectbox('Writing the blog for', ('Researchers','Data Scientist','Common People'),index=0)
|
99 |
-
tone=st.selectbox('Desired Tone', ('Informative','Casual','Persuasive', 'Formal', 'Humorous'),index=0)
|
100 |
-
lang = st.text_input('Language', 'English')
|
101 |
-
info = st.text_input('Specific Instruction')
|
102 |
-
with st.spinner("Loading Model..."):
|
103 |
-
llm= model()
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
st.write(answer)
|
111 |
-
st.markdown(''':orange[Run in your system to access Copy to Clipboard Feature]''')
|
112 |
|
113 |
-
|
114 |
-
|
|
|
|
1 |
+
# app.py
|
|
|
2 |
import streamlit as st
|
3 |
+
import blogger
|
4 |
+
import gist
|
5 |
+
import pdfplumber
|
6 |
+
import ats1
|
7 |
+
import docx
|
8 |
|
9 |
+
st.set_page_config(page_title='AI MultiTask', page_icon='π€', layout='centered')
|
10 |
|
11 |
+
st.title("What You Want To Do")
|
|
|
|
|
12 |
|
13 |
+
uploaded_file = st.file_uploader("Choose a document file", type=["pdf", "txt", "csv", "docx"])
|
14 |
+
text = ''
|
15 |
+
if uploaded_file is not None:
|
16 |
+
st.write("File uploaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
file_extension = uploaded_file.name.split(".")[-1]
|
|
|
|
|
|
|
19 |
|
20 |
+
if file_extension == "pdf":
|
21 |
+
with pdfplumber.open(uploaded_file) as pdf:
|
22 |
+
pages = pdf.pages
|
23 |
+
for page in pages:
|
24 |
+
text = page.extract_text()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
elif file_extension == "txt":
|
27 |
+
text = uploaded_file.getvalue().decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
elif file_extension == "docx":
|
30 |
+
docx_text = docx.Document(uploaded_file)
|
31 |
+
full_text = []
|
32 |
+
for para in docx_text.paragraphs:
|
33 |
+
full_text.append(para.text)
|
34 |
+
text = "\n".join(full_text)
|
35 |
|
36 |
+
st.text_area("Extracted From Document",value=text)
|
37 |
+
st.session_state['doc_text'] = text
|
|
|
|
|
38 |
|
39 |
+
col1, col2, col3 = st.columns([3, 3,3])
|
40 |
+
option = st.radio("I want to use: ", ("Blog", "Summerize", "ATS"), horizontal=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
if option == "Blog":
|
43 |
+
blogger.run_blogger(st.session_state['doc_text'])
|
44 |
+
|
45 |
+
elif option == "Summerize":
|
46 |
+
gist.run_gist(st.session_state['doc_text'])
|
|
|
|
|
47 |
|
48 |
+
elif option == "ATS":
|
49 |
+
ats1.run_ats(st.session_state['doc_text'])
|
50 |
+
|
ats.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
|
3 |
+
load_dotenv()
|
4 |
+
import base64
|
5 |
+
import streamlit as st
|
6 |
+
import os
|
7 |
+
import io
|
8 |
+
from PIL import Image
|
9 |
+
import pdf2image
|
10 |
+
import google.generativeai as genai
|
11 |
+
|
12 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
13 |
+
|
14 |
+
def get_gemini_response(input,pdf_cotent,prompt):
|
15 |
+
model=genai.GenerativeModel('gemini-pro-vision')
|
16 |
+
response=model.generate_content([input,pdf_content[0],prompt])
|
17 |
+
return response.text
|
18 |
+
|
19 |
+
def input_pdf_setup(uploaded_file):
|
20 |
+
if uploaded_file is not None:
|
21 |
+
## Convert the PDF to image
|
22 |
+
images=pdf2image.convert_from_bytes(uploaded_file.read(), poppler_path=r'C:\Program Files (x86)\poppler\Library\bin')
|
23 |
+
|
24 |
+
first_page=images[0]
|
25 |
+
|
26 |
+
# Convert to bytes
|
27 |
+
img_byte_arr = io.BytesIO()
|
28 |
+
first_page.save(img_byte_arr, format='JPEG')
|
29 |
+
img_byte_arr = img_byte_arr.getvalue()
|
30 |
+
|
31 |
+
pdf_parts = [
|
32 |
+
{
|
33 |
+
"mime_type": "image/jpeg",
|
34 |
+
"data": base64.b64encode(img_byte_arr).decode() # encode to base64
|
35 |
+
}
|
36 |
+
]
|
37 |
+
return pdf_parts
|
38 |
+
else:
|
39 |
+
raise FileNotFoundError("No file uploaded")
|
40 |
+
|
41 |
+
## Streamlit App
|
42 |
+
|
43 |
+
st.set_page_config(page_title="ATS Resume EXpert")
|
44 |
+
st.header("ATS Tracking System")
|
45 |
+
input_text=st.text_area("Job Description: ",key="input")
|
46 |
+
uploaded_file=st.file_uploader("Upload your resume(PDF)...",type=["pdf"])
|
47 |
+
|
48 |
+
|
49 |
+
if uploaded_file is not None:
|
50 |
+
st.write("PDF Uploaded Successfully")
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
submit1 = st.button("Tell Me About the Resume")
|
55 |
+
|
56 |
+
#submit2 = st.button("How Can I Improvise my Skills")
|
57 |
+
|
58 |
+
submit3 = st.button("Percentage match")
|
59 |
+
|
60 |
+
input_prompt1 = """
|
61 |
+
You are an experienced Technical Human Resource Manager,your task is to review the provided resume against the job description.
|
62 |
+
Please share your professional evaluation on whether the candidate's profile aligns with the role.
|
63 |
+
Highlight the strengths and weaknesses of the applicant in relation to the specified job requirements.
|
64 |
+
"""
|
65 |
+
|
66 |
+
input_prompt3 = """
|
67 |
+
You are an skilled ATS (Applicant Tracking System) scanner with a deep understanding of data science and ATS functionality,
|
68 |
+
your task is to evaluate the resume against the provided job description. give me the percentage of match if the resume matches
|
69 |
+
the job description. First the output should come as percentage and then keywords missing and last final thoughts.
|
70 |
+
"""
|
71 |
+
|
72 |
+
if submit1:
|
73 |
+
if uploaded_file is not None:
|
74 |
+
pdf_content=input_pdf_setup(uploaded_file)
|
75 |
+
response=get_gemini_response(input_prompt1,pdf_content,input_text)
|
76 |
+
st.subheader("The Repsonse is")
|
77 |
+
st.write(response)
|
78 |
+
else:
|
79 |
+
st.write("Please uplaod the resume")
|
80 |
+
|
81 |
+
elif submit3:
|
82 |
+
if uploaded_file is not None:
|
83 |
+
pdf_content=input_pdf_setup(uploaded_file)
|
84 |
+
response=get_gemini_response(input_prompt3,pdf_content,input_text)
|
85 |
+
st.subheader("The Repsonse is")
|
86 |
+
st.write(response)
|
87 |
+
else:
|
88 |
+
st.write("Please uplaod the resume")
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
ats1.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pyperclip
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import speech_recognition as sr
|
6 |
+
import google.generativeai as genai
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
+
|
10 |
+
|
11 |
+
class ATS(object):
|
12 |
+
def __init__(self, title="ATS Tracking System"):
|
13 |
+
self.title = title
|
14 |
+
|
15 |
+
@staticmethod
|
16 |
+
def model():
|
17 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
18 |
+
return ChatGoogleGenerativeAI(model="gemini-pro")
|
19 |
+
|
20 |
+
@staticmethod
|
21 |
+
def get_gemini_response(llm, input_text, doc, template, info=''):
|
22 |
+
formated_prompt = template.format(doc=doc, input_text=input_text)
|
23 |
+
response = llm.invoke(formated_prompt)
|
24 |
+
return response.content
|
25 |
+
# return formated_prompt
|
26 |
+
|
27 |
+
@staticmethod
|
28 |
+
def copy_text(answer, copy_button=False):
|
29 |
+
pyperclip.copy(answer)
|
30 |
+
if copy_button:
|
31 |
+
st.toast("Text copied to clipboard!", icon="π")
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def record_audio():
|
35 |
+
r = sr.Recognizer()
|
36 |
+
with st.spinner("Recording..."):
|
37 |
+
with sr.Microphone() as source:
|
38 |
+
r.adjust_for_ambient_noise(source)
|
39 |
+
with st.spinner("Say Something..."):
|
40 |
+
audio = r.listen(source, timeout=5)
|
41 |
+
with st.spinner("Processing..."):
|
42 |
+
try:
|
43 |
+
text = r.recognize_google(audio)
|
44 |
+
st.session_state['input_text'] = text
|
45 |
+
return text
|
46 |
+
except sr.UnknownValueError:
|
47 |
+
st.write("Sorry, I could not understand what you said. Please try again or write in text box.")
|
48 |
+
return ""
|
49 |
+
except sr.RequestError as e:
|
50 |
+
st.write(f"Could not request results; {e}")
|
51 |
+
return ""
|
52 |
+
|
53 |
+
@staticmethod
|
54 |
+
def input_state(input_text):
|
55 |
+
if isinstance(input_text, str):
|
56 |
+
st.session_state['input_text'] = input_text
|
57 |
+
|
58 |
+
|
59 |
+
def run_ats(doc=''):
|
60 |
+
load_dotenv()
|
61 |
+
ats = ATS()
|
62 |
+
st.header(ats.title + " π€", divider='rainbow')
|
63 |
+
input_text=st.text_area("Job Description: ",key="input")
|
64 |
+
# uploaded_file=st.file_uploader("Upload your resume(PDF)...",type=["pdf"])
|
65 |
+
|
66 |
+
|
67 |
+
# if uploaded_file is not None:
|
68 |
+
# st.write("PDF Uploaded Successfully")
|
69 |
+
|
70 |
+
|
71 |
+
with st.sidebar:
|
72 |
+
st.title(' :blue[_AI Generated ATS] π€')
|
73 |
+
st.subheader('Parameters')
|
74 |
+
|
75 |
+
with st.spinner("Loading Model..."):
|
76 |
+
llm = ats.model()
|
77 |
+
submit1 = st.button("Tell Me About the Resume")
|
78 |
+
|
79 |
+
# submit2 = st.button("How Can I Improvise my Skills")
|
80 |
+
|
81 |
+
submit3 = st.button("Percentage match")
|
82 |
+
|
83 |
+
input_prompt1 = """
|
84 |
+
You are an experienced Technical Human Resource Manager,your task is to review the provided resume against the job description.
|
85 |
+
Please share your professional evaluation on whether the candidate's profile aligns with the role.
|
86 |
+
Highlight the strengths and weaknesses of the applicant in relation to the specified job requirements.
|
87 |
+
|
88 |
+
Job Description: {input_text}
|
89 |
+
Resume: {doc}
|
90 |
+
"""
|
91 |
+
|
92 |
+
input_prompt3 = """
|
93 |
+
You are an skilled ATS (Applicant Tracking System) scanner with a deep understanding of data science and ATS functionality,
|
94 |
+
your task is to evaluate the resume against the provided job description. give me the percentage of match if the resume matches
|
95 |
+
the job description. First the output should come as percentage and then keywords missing and last final thoughts.
|
96 |
+
|
97 |
+
Job Description: {input_text}
|
98 |
+
Resume: {doc}
|
99 |
+
"""
|
100 |
+
|
101 |
+
if submit1:
|
102 |
+
if doc is not None:
|
103 |
+
response=ats.get_gemini_response(llm=llm,template=input_prompt1,doc=doc,input_text=input_text)
|
104 |
+
st.subheader("The Repsonse is")
|
105 |
+
st.write(response)
|
106 |
+
else:
|
107 |
+
st.write("Please uplaod the resume")
|
108 |
+
|
109 |
+
elif submit3:
|
110 |
+
if doc is not None:
|
111 |
+
response=ats.get_gemini_response(llm=llm,template=input_prompt3,doc=doc,input_text=input_text)
|
112 |
+
st.subheader("The Repsonse is")
|
113 |
+
st.write(response)
|
114 |
+
else:
|
115 |
+
st.write("Please uplaod the resume")
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
run_ats()
|
blogger.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# blogger.py
|
2 |
+
import os
|
3 |
+
import pyperclip
|
4 |
+
import streamlit as st
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import speech_recognition as sr
|
7 |
+
import google.generativeai as genai
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
10 |
+
|
11 |
+
class Blog(object):
|
12 |
+
def __init__(self, title="AI Blogger"):
|
13 |
+
self.title = title
|
14 |
+
|
15 |
+
@staticmethod
|
16 |
+
def model():
|
17 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
18 |
+
return ChatGoogleGenerativeAI(model="gemini-pro")
|
19 |
+
|
20 |
+
@staticmethod
|
21 |
+
def getLLamaresponse(llm, input_text, tone, lang, blog_style, no_words, doc='', info=''):
|
22 |
+
template = """
|
23 |
+
Write a {tone} blog in {lang} as {blog_style} for a topic {input_text} within {no_words} words with references and video links also if possible and ends with a conclusion. {info} {doc}
|
24 |
+
""".format(tone=tone, lang=lang, blog_style=blog_style, input_text=input_text,
|
25 |
+
no_words=no_words,doc=doc, info=info)
|
26 |
+
response = llm.invoke(template)
|
27 |
+
return response.content
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def copy_text(answer, copy_button=False):
|
31 |
+
pyperclip.copy(answer)
|
32 |
+
if copy_button:
|
33 |
+
st.toast("Text copied to clipboard!", icon="π")
|
34 |
+
|
35 |
+
@staticmethod
|
36 |
+
def record_audio():
|
37 |
+
r = sr.Recognizer()
|
38 |
+
with st.spinner("Recording..."):
|
39 |
+
with sr.Microphone() as source:
|
40 |
+
r.adjust_for_ambient_noise(source)
|
41 |
+
with st.spinner("Say Something..."):
|
42 |
+
audio = r.listen(source, timeout=5)
|
43 |
+
with st.spinner("Processing..."):
|
44 |
+
try:
|
45 |
+
text = r.recognize_google(audio)
|
46 |
+
st.session_state['input_text'] = text
|
47 |
+
return text
|
48 |
+
except sr.UnknownValueError:
|
49 |
+
st.write("Sorry, I could not understand what you said. Please try again or write in text box.")
|
50 |
+
return ""
|
51 |
+
except sr.RequestError as e:
|
52 |
+
st.write(f"Could not request results; {e}")
|
53 |
+
return ""
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def input_state(input_text):
|
57 |
+
if isinstance(input_text, str):
|
58 |
+
st.session_state['input_text'] = input_text
|
59 |
+
|
60 |
+
def run_blogger(doc=''):
|
61 |
+
load_dotenv()
|
62 |
+
blog = Blog()
|
63 |
+
|
64 |
+
st.header(blog.title + " π€", divider='rainbow')
|
65 |
+
|
66 |
+
hide_streamlit_style = """
|
67 |
+
<style>
|
68 |
+
#MainMenu {visibility: hidden;}
|
69 |
+
footer {visibility: hidden;}
|
70 |
+
</style>
|
71 |
+
"""
|
72 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
73 |
+
|
74 |
+
button_disabled = True
|
75 |
+
|
76 |
+
if button_disabled:
|
77 |
+
st.toast("Mic Button is disabled in production. HF Don't have Audio Device")
|
78 |
+
|
79 |
+
col1, col2 = st.columns([20, 3])
|
80 |
+
|
81 |
+
with col1:
|
82 |
+
text = st.empty()
|
83 |
+
input_text = text.text_input("Enter the Blog Topic")
|
84 |
+
|
85 |
+
with col2:
|
86 |
+
recorder = st.button("ποΈ", help="Blog Topic by Voice", key="mic", disabled=button_disabled)
|
87 |
+
|
88 |
+
if recorder:
|
89 |
+
recorded_text = blog.record_audio()
|
90 |
+
if recorded_text:
|
91 |
+
input_text = text.text_input("Enter the Blog Topic", value=recorded_text)
|
92 |
+
|
93 |
+
if doc:
|
94 |
+
input_text = text.text_area("Enter the Blog Topic", value=doc)
|
95 |
+
input_text = "Reference: "+ input_text
|
96 |
+
|
97 |
+
with st.sidebar:
|
98 |
+
st.title(' :blue[_AI Generated Blog_] π€')
|
99 |
+
st.subheader('Parameters')
|
100 |
+
no_words = st.sidebar.slider('Maximum Characters', min_value=100, max_value=5000, value=1000, step=100)
|
101 |
+
blog_style = st.selectbox('Writing the blog for', ('Researchers', 'Data Scientist', 'Common People'), index=0)
|
102 |
+
tone = st.selectbox('Desired Tone', ('Informative', 'Casual', 'Persuasive', 'Formal', 'Humorous'), index=0)
|
103 |
+
lang = st.text_input('Language', 'English')
|
104 |
+
info = st.text_area('Specific Instruction')
|
105 |
+
with st.spinner("Loading Model..."):
|
106 |
+
llm = blog.model()
|
107 |
+
|
108 |
+
submit = st.button("Generate Blog", on_click=lambda: blog.input_state(input_text))
|
109 |
+
|
110 |
+
if submit:
|
111 |
+
with st.spinner("Generating Blog..."):
|
112 |
+
answer = blog.getLLamaresponse(llm, st.session_state['input_text'], tone, lang, blog_style, no_words, doc, info)
|
113 |
+
st.success('Blog Generated!', icon="β
")
|
114 |
+
st.write(answer)
|
115 |
+
st.markdown(''':orange[Run in your system to access Copy to Clipboard Feature]''')
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
run_blogger()
|
gist.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pyperclip
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import speech_recognition as sr
|
6 |
+
import google.generativeai as genai
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
+
|
10 |
+
class Summary(object):
|
11 |
+
def __init__(self, title="AI Summarizer"):
|
12 |
+
self.title = title
|
13 |
+
|
14 |
+
@staticmethod
|
15 |
+
def model():
|
16 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
17 |
+
return ChatGoogleGenerativeAI(model="gemini-pro")
|
18 |
+
|
19 |
+
@staticmethod
|
20 |
+
def getLLamaresponse(llm, input_text, tone, lang, gist_style, no_words, info=''):
|
21 |
+
template = """
|
22 |
+
Write a {tone} summary in {lang} as {gist_style} within {no_words} words.
|
23 |
+
Text: {input_text}
|
24 |
+
{info}
|
25 |
+
""".format(tone=tone, lang=lang, gist_style=gist_style, input_text=input_text,
|
26 |
+
no_words=no_words, info=info)
|
27 |
+
response = llm.invoke(template)
|
28 |
+
return response.content
|
29 |
+
# return formated_prompt
|
30 |
+
|
31 |
+
@staticmethod
|
32 |
+
def copy_text(answer, copy_button=False):
|
33 |
+
pyperclip.copy(answer)
|
34 |
+
if copy_button:
|
35 |
+
st.toast("Text copied to clipboard!", icon="π")
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def record_audio():
|
39 |
+
r = sr.Recognizer()
|
40 |
+
with st.spinner("Recording..."):
|
41 |
+
with sr.Microphone() as source:
|
42 |
+
r.adjust_for_ambient_noise(source)
|
43 |
+
with st.spinner("Say Something..."):
|
44 |
+
audio = r.listen(source, timeout=5)
|
45 |
+
with st.spinner("Processing..."):
|
46 |
+
try:
|
47 |
+
text = r.recognize_google(audio)
|
48 |
+
st.session_state['input_text'] = text
|
49 |
+
return text
|
50 |
+
except sr.UnknownValueError:
|
51 |
+
st.write("Sorry, I could not understand what you said. Please try again or write in text box.")
|
52 |
+
return ""
|
53 |
+
except sr.RequestError as e:
|
54 |
+
st.write(f"Could not request results; {e}")
|
55 |
+
return ""
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def input_state(input_text):
|
59 |
+
if isinstance(input_text, str):
|
60 |
+
st.session_state['input_text'] = input_text
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
def run_gist(doc=''):
|
65 |
+
load_dotenv()
|
66 |
+
gist = Summary()
|
67 |
+
|
68 |
+
st.header(gist.title + " π€", divider='rainbow')
|
69 |
+
|
70 |
+
hide_streamlit_style = """
|
71 |
+
<style>
|
72 |
+
#MainMenu {visibility: hidden;}
|
73 |
+
footer {visibility: hidden;}
|
74 |
+
</style>
|
75 |
+
"""
|
76 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
77 |
+
|
78 |
+
button_disabled = False
|
79 |
+
|
80 |
+
if button_disabled:
|
81 |
+
st.toast("Mic Button is disabled in production. HF Don't have Audio Device")
|
82 |
+
|
83 |
+
col1, col2 = st.columns([20, 3])
|
84 |
+
|
85 |
+
with col1:
|
86 |
+
text = st.empty()
|
87 |
+
input_text = text.text_area("Enter Text")
|
88 |
+
|
89 |
+
with col2:
|
90 |
+
recorder = st.button("ποΈ", help="Text by Voice", key="mic", disabled=button_disabled)
|
91 |
+
|
92 |
+
if recorder:
|
93 |
+
recorded_text = gist.record_audio()
|
94 |
+
if recorded_text:
|
95 |
+
input_text = text.text_area("Enter Text", value=recorded_text)
|
96 |
+
|
97 |
+
if doc:
|
98 |
+
input_text = text.text_area("Enter Text", value=doc)
|
99 |
+
|
100 |
+
with st.sidebar:
|
101 |
+
st.title(' :blue[_AI Generated Summary_] π€')
|
102 |
+
st.subheader('Parameters')
|
103 |
+
no_words = st.sidebar.slider('Maximum Characters', min_value=100, max_value=5000, value=1000, step=100)
|
104 |
+
gist_style = st.selectbox('Writing the Summary for', ('Researchers', 'Data Scientist', 'Common People'), index=0)
|
105 |
+
tone = st.selectbox('Desired Tone', ('Informative', 'Casual', 'Persuasive', 'Formal', 'Humorous'), index=0)
|
106 |
+
lang = st.text_input('Language', 'English')
|
107 |
+
info = st.text_area('Specific Instruction')
|
108 |
+
with st.spinner("Loading Model..."):
|
109 |
+
llm = gist.model()
|
110 |
+
|
111 |
+
submit = st.button("Generate Summary", on_click=lambda: gist.input_state(input_text))
|
112 |
+
print("Session: ", st.session_state)
|
113 |
+
if submit:
|
114 |
+
with st.spinner("Generating Summary..."):
|
115 |
+
answer = gist.getLLamaresponse(llm, st.session_state['input_text'], tone, lang, gist_style, no_words, info)
|
116 |
+
st.success('Summary Generated!', icon="β
")
|
117 |
+
st.write(answer)
|
118 |
+
st.markdown(''':orange[Run in your system to access Copy to Clipboard Feature]''')
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
run_gist()
|
requirements.txt
CHANGED
@@ -2,8 +2,14 @@ google-generativeai
|
|
2 |
langchain-google-genai
|
3 |
langchain
|
4 |
streamlit
|
|
|
5 |
pyperclip
|
6 |
huggingface_hub
|
7 |
python-dotenv
|
8 |
SpeechRecognition
|
9 |
-
PyAudio
|
|
|
|
|
|
|
|
|
|
|
|
2 |
langchain-google-genai
|
3 |
langchain
|
4 |
streamlit
|
5 |
+
pdf2image
|
6 |
pyperclip
|
7 |
huggingface_hub
|
8 |
python-dotenv
|
9 |
SpeechRecognition
|
10 |
+
PyAudio
|
11 |
+
pdfplumber
|
12 |
+
python-docx
|
13 |
+
|
14 |
+
|
15 |
+
https://github.com/oschwartz10612/poppler-windows/releases/download/v24.02.0-0/Release-24.02.0-0.zip
|