import asyncio import logging import torch import gradio as gr from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from typing import List, Dict from functools import lru_cache import uvicorn import psutil import numpy as np class EmbeddingRequest(BaseModel): input: str model: str = "jinaai/jina-embeddings-v3" class EmbeddingResponse(BaseModel): status: str embeddings: List[List[float]] class EmbeddingService: def __init__(self): self.model_name = "jinaai/jina-embeddings-v3" self.max_length = 512 self.batch_size = 8 self.device = torch.device("cpu") self.num_threads = min(psutil.cpu_count(), 4) # 限制CPU线程数 self.model = None self.tokenizer = None self.setup_logging() # CPU优化配置 torch.set_num_threads(self.num_threads) def setup_logging(self): logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) self.logger = logging.getLogger(__name__) async def initialize(self): try: from transformers import AutoTokenizer, AutoModel self.tokenizer = AutoTokenizer.from_pretrained( self.model_name, trust_remote_code=True ) self.model = AutoModel.from_pretrained( self.model_name, trust_remote_code=True, torch_dtype=torch.float32 # CPU使用float32 ).to(self.device) self.model.eval() torch.set_grad_enabled(False) self.logger.info(f"模型加载成功,CPU线程数: {self.num_threads}") except Exception as e: self.logger.error(f"模型初始化失败: {str(e)}") raise @lru_cache(maxsize=1000) async def generate_embedding(self, text: str) -> List[float]: try: inputs = self.tokenizer( text, return_tensors="pt", truncation=True, max_length=self.max_length, padding=True ) with torch.no_grad(): outputs = self.model(**inputs).last_hidden_state.mean(dim=1) return outputs.numpy().tolist()[0] except Exception as e: self.logger.error(f"生成嵌入向量失败: {str(e)}") raise # FastAPI应用初始化 app = FastAPI( title="Jina Embeddings API", description="Text embedding generation service using jina-embeddings-v3", version="1.0.0" ) # 初始化服务 embedding_service = EmbeddingService() # CORS配置 app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # API端点 @app.post("/generate_embeddings", response_model=EmbeddingResponse) @app.post("/api/v1/embeddings", response_model=EmbeddingResponse) @app.post("/hf/v1/embeddings", response_model=EmbeddingResponse) @app.post("/api/v1/chat/completions", response_model=EmbeddingResponse) @app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse) async def generate_embeddings(request: EmbeddingRequest): try: embedding = await embedding_service.generate_embedding(request.input) return EmbeddingResponse( status="success", embeddings=[embedding] ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/") async def root(): return { "status": "active", "model": embedding_service.model_name, "device": str(embedding_service.device), "cpu_threads": embedding_service.num_threads } # Gradio界面 def gradio_interface(text: str) -> Dict: try: embedding = asyncio.run(embedding_service.generate_embedding(text)) return { "status": "success", "embeddings": [embedding] } except Exception as e: return { "status": "error", "message": str(e) } iface = gr.Interface( fn=gradio_interface, inputs=gr.Textbox(lines=3, label="输入文本"), outputs=gr.JSON(label="嵌入向量结果"), title="Jina Embeddings V3", description="使用jina-embeddings-v3模型生成文本嵌入向量", examples=[["这是一个测试句子。"]] ) @app.on_event("startup") async def startup_event(): await embedding_service.initialize() if __name__ == "__main__": # 初始化服务 asyncio.run(embedding_service.initialize()) # 挂载Gradio应用 gr.mount_gradio_app(app, iface, path="/ui") # 启动服务 uvicorn.run( app, host="0.0.0.0", port=7860, workers=1, loop="asyncio" )