Spaces:
Running
Running
import json | |
from keras.models import Model, load_model | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
model = load_model('final_vgg1920epochs.h5', compile=True) | |
# Opening JSON file | |
f = open('dat.json') | |
# returns JSON object as | |
# a dictionary | |
data = json.load(f) | |
keys = list(data) | |
def Predict(image): | |
img = cv2.resize(image, (32,32)) / 255.0 | |
prediction = model.predict(img.reshape(1,32,32,3)) | |
print(prediction) | |
return keys[prediction.argmax()],data[keys[prediction.argmax()]]['description'],data[keys[prediction.argmax()]]['symptoms'],data[keys[prediction.argmax()]]['causes'],data[keys[prediction.argmax()]]['treatement-1'] | |
demo=gr.Interface(fn=Predict, | |
inputs="image", | |
outputs=[gr.inputs.Textbox(label='Name Of Disease'),gr.inputs.Textbox(label='Description'),gr.inputs.Textbox(label='Symptoms'),gr.inputs.Textbox(label='Causes'),gr.inputs.Textbox(label='Treatement')], | |
title="Predict Skin Disease") | |
demo.launch(debug=True) |