import os from pathlib import Path import io import torch import pickle def print_models(base_path, model_string): print(model_string) for i in range(80): for e in range(50): exists = Path(os.path.join(base_path, f'models_diff/prior_diff_real_checkpoint{model_string}_n_{i}_epoch_{e}.cpkt')).is_file() if exists: print(os.path.join(base_path, f'models_diff/prior_diff_real_checkpoint{model_string}_n_{i}_epoch_{e}.cpkt')) print() class CustomUnpickler(pickle.Unpickler): def find_class(self, module, name): if name == 'Manager': from settings import Manager return Manager try: return self.find_class_cpu(module, name) except: return None def find_class_cpu(self, module, name): if module == 'torch.storage' and name == '_load_from_bytes': return lambda b: torch.load(io.BytesIO(b), map_location='cpu') else: return super().find_class(module, name)