import math import torch from torch import nn # Protocol for positonal encodings. # __init__(d_model, max_len=..[, more optionals]) # forward(x: (seq_len, bs, d_model)) -> Tensor of shape (*x.shape[:2],d_model) containing pos. embeddings class NoPositionalEncoding(nn.Module): def __init__(self, d_model, max_len=None): super(NoPositionalEncoding, self).__init__() pass def forward(self, x): return x #* math.sqrt(x.shape[-1]) class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = self.pe[:x.size(0), :] + x # * math.sqrt(x.shape[-1]) return x class LearnedPositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super(LearnedPositionalEncoding, self).__init__() self.max_seq_len = max_len #self.positional_embeddings = nn.Embedding(max_len, d_model) self.positional_embeddings = nn.Parameter(torch.empty(max_len, d_model)) nn.init.normal_(self.positional_embeddings, mean=0, std=d_model ** -0.5) def forward(self, x): seq_len, bs, d_model = x.shape assert seq_len <= len(self.positional_embeddings), 'seq_len can be at most max_len.' pos_emb = self.positional_embeddings[:seq_len] return pos_emb.unsqueeze(1).expand(seq_len, bs, d_model) + x #* math.sqrt(x.shape[-1]) class PairedScrambledPositionalEncodings(LearnedPositionalEncoding): # TODO check whether it is a problem to use the same perm. for full batch def forward(self, x): seq_len, bs, d_model = x.shape assert seq_len <= len(self.positional_embeddings), 'seq_len can be at most max_len.' assert len(self.positional_embeddings) % 2 == 0, 'Please specify an even max_len.' paired_embs = self.positional_embeddings.view(len(self.positional_embeddings), -1, 2) pos_emb = paired_embs[torch.randperm(len(paired_embs))].view(*self.positional_embeddings.shape)[:seq_len] return pos_emb.unsqueeze(1).expand(seq_len, bs, d_model) + x #* math.sqrt(x.shape[-1])