Spaces:
Sleeping
Sleeping
File size: 9,439 Bytes
667959c 7d84684 667959c 903243e 667959c e36ed6b 903243e 667959c e36ed6b fb032ac 903243e 667959c 903243e 667959c 903243e 184b1eb 5f7376d 184b1eb 903243e 667959c 184b1eb 903243e 667959c 903243e 667959c ef9d847 667959c 903243e 667959c 903243e 667959c 464a43e 667959c 464a43e ef9d847 464a43e 903243e ef9d847 903243e 667959c 903243e 667959c 3f3bbee 721b963 184b1eb ef9d847 667959c 464a43e 667959c 0d061ad 667959c 0d061ad 667959c 7d84684 87886ae 7d84684 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import streamlit as st
import openai
st.set_page_config(
page_title="SVARUPA AI",
layout="centered", # or "wide"
initial_sidebar_state="auto" # or "expanded" or "collapsed"
)
from llama_index.core import VectorStoreIndex, StorageContext, Document
from llama_index.llms.openai import OpenAI
import os
import pandas as pd
from llama_index.core import Settings
from llama_index.vector_stores.pinecone import PineconeVectorStore
import pinecone
from pinecone import Pinecone, PodSpec
from llama_index.core.query_engine import PandasQueryEngine
from llama_index.core.agent import ReActAgent
from llama_index.core.memory import ChatMemoryBuffer
from sentence_transformers import SentenceTransformer
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
#from llama_index.indices.postprocessor import SimilarityPostprocessor
#from llama_index.postprocessor import SentenceTransformerRerank
import tiktoken
from llama_index.core.callbacks import CallbackManager, TokenCountingHandler
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from Tools import ScriptureDescriptionToolSpec, MantraToolSpec, PadaToolSpec
# Print all loaded secrets
all_secrets = st.secrets
# Access the specific secret
try:
openai_api_key = st.secrets["OPENAI_APIKEY_CS"]
except KeyError as e:
st.error(f"KeyError: {e}")
# Access the specific secret
try:
pinecone_api_key = st.secrets["PINECONE_API_KEY_SAM"]
#st.write("OpenAI API Key:", openai_api_key)
except KeyError as e:
st.error(f"KeyError: {e}")
#llm
llm_AI4 = OpenAI(temperature=0, model="gpt-4-1106-preview",api_key=openai_api_key, max_tokens=512)
token_counter = TokenCountingHandler(
tokenizer=tiktoken.encoding_for_model("gpt-4-1106-preview").encode
)
# global settings
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-large-en-v1.5",
embed_batch_size=8
)
Settings.llm = llm_AI4
Settings.chunk_size = 512
Settings.chunk_overlap = 50
Settings.callback_manager = CallbackManager([token_counter])
#memory for bot
memory = ChatMemoryBuffer.from_defaults(token_limit=3900)
#load vector database
pc = Pinecone(api_key=pinecone_api_key)
pinecone_index = pc.Index("pod-index")
vector_store_pine = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context_pine = StorageContext.from_defaults(vector_store=vector_store_pine)
index_store = VectorStoreIndex.from_vector_store(vector_store_pine,storage_context=storage_context_pine)
query_engine_vector = index_store.as_query_engine(similarity_top_k=10,vector_store_query_mode ='hybrid',alpha=0.6,inlcude_metadata = True)
VEDAMANTRA_CSV_PATH = "Data/veda_content_modified_v5.csv"
PADA_CSV_PATH = "Data/term_data_processed_v2.csv"
VEDACONTENT_CSV_PATH = "Data/veda_content_details.csv"
#pandas Engine
df_veda_details = pd.read_csv(VEDACONTENT_CSV_PATH,encoding='utf-8-sig')
df_pada_details = pd.read_csv(PADA_CSV_PATH,encoding='utf-8-sig')
query_engine_veda = PandasQueryEngine(df=df_veda_details)
query_engine_pada = PandasQueryEngine(df=df_pada_details)
# Query Engine Tools
query_engine_tools = [
QueryEngineTool(
query_engine=query_engine_vector,
metadata=ToolMetadata(
name="vector_engine",
description=(
'''
Helpful to get semantic information from the documents. These documents containing comprehensive information about the Vedas.\
They also covers various aspects, including general details about the Vedas, fundamental terminology associated with Vedic literature, \
and detailed information about Vedamantras for each Veda. The Vedamantra details encompass essential elements such as padapatha, rishi, chandah,\
devata, and swarah.This tool is very useful to answer general questions related to vedas.
Sample Query:
1. What is the meaning of devata ?
2. What are the different Brahmanas associated with SamaVeda?
3. What is the difference between Shruti and Smriti.
'''
),
),
),
QueryEngineTool(
query_engine=query_engine_veda,
metadata=ToolMetadata(
name="pandas_engine_vedas",
description=(
'''A powerful tool designed to handle queries related to counting information about vedic content document. This document is a .csv file with different columns as follows:\
'mantra_id', 'scripture_name', 'KandahNumber', 'PrapatakNumber','AnuvakNumber', 'MantraNumber', 'DevataName', 'RishiName', 'SwarahName', 'ChandaName',\
'padapatha', 'vedamantra', 'AdhyayaNumber', 'ArchikahNumber', 'ArchikahName', 'ShuktaNumber', 'keyShukta', 'ParyayaNumber', 'MandalaNumber'.\
Always provide the final answer after excuting pandas query which is equivalent to user query.
Sample Query:
1. How many mantras are there in RigVeda whose swarah is gāndhāraḥ?
2. How many different devata present in RigVeda?
3. Which Kandah has the maximum number of in KrishnaYajurVeda?
4. Find the number of mantras from AtharvaVeda whose devata is vācaspatiḥ and chandah is anuṣṭup?
5. count the mantras in RigVeda whose swarah is gāndhāraḥ?
'''
),
),
),
QueryEngineTool(
query_engine=query_engine_pada,
metadata=ToolMetadata(
name="pandas_engine_padas",
description=(
'''A powerful tool designed to handle queries related to counting information about pada or words from vedic documents. This document is a .csv file with different columns as follows:
'Pada', 'scripture_name', 'mantra_id', 'MantraNumber', 'AnuvakNumber', 'PrapatakNumber', 'KandahNumber', 'Pada_position', 'term_index', 'Segmentation', 'Morphology', 'ShuktaNumber',
'ArchikahNumber', 'AdhyayaNumber', 'MandalaNumber', 'ParyayaNumber'.
Always provide the final answer after excuting pandas query which is equivalent to user query.
Sample Query:
1. How many padas are there in RigVeda?
2. How many padas present in both rigveda and samaveda?
'''
),
),
)
]
# tools
mantra_tools = MantraToolSpec().to_tool_list()
description_tools = ScriptureDescriptionToolSpec().to_tool_list()
pada_tools = PadaToolSpec().to_tool_list()
tools = [*mantra_tools,*pada_tools,*description_tools,*query_engine_tools]
# context
context = """
You are an expert on Vedas and related scriptures.
Your role is to respond to questions about vedic scriptures (RigVeda, AtharvaVeda, SamaVeda, ShuklaYajurVeda, and KrishnaYajurVeda) and associated information based on knowledge base provided by Svarupa.
For every query, you first use an tool. If the input args, kwargs and tools for the given query is same as in the history or retrieved context is sufficient, then use the history as context.
Please provide well-informed answers. If the context or history is not sufficient, you can say that you don't have sufficient information. Don't use prior knowledge.
If your response is based on "Implicit" thought then you can caution the user that the answer is not from the 'Svarupa Knowledge base'.
Also, provide three follow-up questions based on the input query and the context in the following format.
*****
You may also try the following questions:
1. Question1
2. Question2
3. Question3
"""
# Function to create ReActAgent instance (change it based on your initialization logic)
@st.cache_resource(show_spinner=False) # Set allow_output_mutation to True for mutable objects like instances
def create_react_agent():
return ReActAgent.from_tools(tools, llm=llm_AI4, context=context, memory = memory, max_iterations = 100,verbose=True)
# Example usage
react_agent_instance = create_react_agent()
# Streamlit Components Initialization
st.title("Veda Bot ")
if "messages" not in st.session_state.keys():
st.session_state.messages = [
{"role": "assistant", "content": "Hi. I am AI Assistant. Ask me a question about Vedas!"}
]
if "chat_engine" not in st.session_state.keys():
# Using st.cache_resource for caching the unserializable react_agent
st.session_state.chat_engine = create_react_agent()
if prompt := st.chat_input("Your question"):
st.session_state.messages.append({"role": "user", "content": prompt})
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
try:
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
# Using the cached chat_engine
response = st.session_state.chat_engine.chat(prompt)
st.write(response.response)
message = {"role": "assistant", "content": response.response}
st.session_state.messages.append(message)
except openai.RateLimitError as e:
# Handle the RateLimitError
st.error("You have exceeded your API quota. Please check your plan and billing details.")
except Exception as e:
# Handle other exceptions if needed
st.error(f"An unexpected error occurred: {e}")
|