# Set the page config import streamlit as st st.set_page_config( page_title="Image Processing", page_icon=":open_file_folder:", layout="wide", initial_sidebar_state="collapsed", ) # Importing necessary libraries import cv2 import utils import numpy as np import Functions.image_processing_functions as image_processing_functions # Load image processing technique parameters and details from an Excel file image_processing_params_df = utils.load_data_from_excel( "packages_db.xlsx", "image_processing_parameters" ) image_processing_details_df = utils.load_data_from_excel( "packages_db.xlsx", "image_processing_details" ) # Display the page title st.title("Image Processing") # # Clear the Streamlit session state on the first load of the page # utils.clear_session_state_on_first_load("image_processing_clear") # List of session state keys to initialize if they are not already present session_state_keys = [ "file_uploader_key_processing", "select_processing_technique_key_processing", ] # Iterate through each session state key for key in session_state_keys: # Check if the key is not already in the session state if key not in st.session_state: # Initialize the key with a dictionary containing itself set to True st.session_state[key] = {key: True} # Initialize session state variables if not present if "validation_triggered" not in st.session_state: st.session_state["validation_triggered"] = False if "uploaded_files_cache_processing" not in st.session_state: st.session_state["uploaded_files_cache_processing"] = False if "zip_data_processing" not in st.session_state: st.session_state["zip_data_processing"] = "" if "widget_states" not in st.session_state: st.session_state["widget_states"] = {} # Interface for uploading an images and labels utils.display_file_uploader( "uploaded_files", "Choose images and labels...", st.session_state["file_uploader_key_processing"], st.session_state["uploaded_files_cache_processing"], ) # Note to users st.markdown( """ <div style='text-align: justify;'> <b>Note to Users:</b> <ul> <li>The <i>first uploaded image</i> will be used for demonstration purposes and to validate parameters for image processing techniques.</li> <li>Uploading <i>labels is optional</i>. If no labels are uploaded, the output will consist solely of processed images.</li> <li>When moving to another page or if you wish to upload a new set of images and labels, don't forget to hit the <b>Reset</b> button. This helps in faster computation and frees up unused memory, ensuring smoother operation.</li> </ul> </div> """, unsafe_allow_html=True, ) # List of session state variables to initialize session_vars = [ "is_valid", "image_files", "label_files", "first_image_file", "first_label_file", ] # Initialize each variable as None if it doesn't exist in the session state for var in session_vars: if var not in st.session_state: st.session_state[var] = None # Create two columns col1, col2 = st.columns(2) # Button to trigger validation if ( col1.button("Validate Input", use_container_width=True) or st.session_state["widget_states"].get("validate_input_button", False) ) and not st.session_state["validation_triggered"]: st.session_state["validation_triggered"] = True st.session_state["uploaded_files_cache_processing"] = True ( st.session_state["is_valid"], st.session_state["image_files"], st.session_state["label_files"], st.session_state["first_image_file"], st.session_state["first_label_file"], ) = image_processing_functions.check_valid_labels( st.session_state["uploaded_files"] ) elif st.session_state["validation_triggered"]: pass else: st.session_state["is_valid"] = False st.warning( "Please upload images and labels and click **Validate Input**.", icon="⚠️" ) with col2: # Check if the 'Reset' button is pressed if st.button("Reset", use_container_width=True): # Toggle the keys for file uploader and processing technique to reset their states current_value = st.session_state["file_uploader_key_processing"][ "file_uploader_key_processing" ] updated_value = not current_value # Invert the current value # List of session state keys that need to be reset session_state_keys = [ "file_uploader_key_processing", "select_processing_technique_key_processing", ] # Iterate through each session state key for session_state_key in session_state_keys: # Update each key in the session state with the toggled value st.session_state[session_state_key] = {session_state_key: updated_value} # Clear all other session state keys except for widget_state_keys for key in list(st.session_state.keys()): if key not in session_state_keys: del st.session_state[key] # Clear global variables except for protected and Streamlit module global_vars = list(globals().keys()) vars_to_delete = [ var for var in global_vars if not var.startswith("_") and var != "st" ] for var in vars_to_delete: del globals()[var] # Clear the Streamlit caches st.cache_resource.clear() st.cache_data.clear() # Rerun the app to reflect the reset state st.rerun() # Interface to select image processing techniques available_image_processings = image_processing_details_df["Name"] # Mapping each image processing techniques to its corresponding image types input_mapping_dict = utils.technique_image_input_mapping( available_image_processings, image_processing_details_df ) # Present the option to select image processing techniques only if the uploaded files are validated successfully if st.session_state["is_valid"]: selected_image_processings = st.multiselect( "Select image processing technique(s)", available_image_processings, key=st.session_state["select_processing_technique_key_processing"], ) # Read the first uploaded image into a NumPy array st.session_state["first_image_file"].seek(0) # Reset file pointer to start file_bytes_first_image = np.frombuffer( st.session_state["first_image_file"].read(), dtype=np.uint8 ) uploaded_first_image = cv2.cvtColor( cv2.imdecode(file_bytes_first_image, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB ) # Resize the image uploaded_first_image = cv2.resize(uploaded_first_image, (256, 256)) else: # Reset selected techniques to empty if input validation fails selected_image_processings = [] ####################################################################################################### # Build custom image processing pipeline ####################################################################################################### # Store parameters for each selected image processing technique image_processings_params = {} # Initialize a flag to track if any error exists error_in_parameters = False # Loop through each selected image processing techniques to set up parameters for image_processing in selected_image_processings: with st.expander(f"{image_processing}"): # Retrieve image processing details from the database image_processing_info = image_processing_details_df[ image_processing_details_df["Name"] == image_processing ] # Set up columns for displaying details and image placeholders details_col, image_col = st.columns([7, 3]) with details_col: # Display the description for the image processing technique image_processing_description = ( image_processing_info["Description"].iloc[0] if not image_processing_info.empty else "No description available." ) st.markdown( f"<div style='text-align: justify;'><b>Description:</b> {image_processing_description}</div>", unsafe_allow_html=True, ) # Display the category for the image processing image_processing_category = ( image_processing_info["Category"].iloc[0] if not image_processing_info.empty else "Unknown" ) st.write("Category:", image_processing_category) # Retrieve the source code link for the image processing image_processing_source_code = ( image_processing_info["Source Code Link"].iloc[0] if not image_processing_info.empty else "www.google.com" ) # Set up columns for displaying source code button and custom settings checkbox source_code_col, custo_setting_col = st.columns(2) source_code_col.link_button("Source Code", image_processing_source_code) # Toggle for custom settings custom_settings = custo_setting_col.checkbox( f"Customize {image_processing}", key=f"toggle_{image_processing}" ) with image_col: # Create two columns col1, col2 = st.columns(2) original_image_placeholder = col1.container(height=200, border=False) processed_image_placeholder = col2.container(height=200, border=False) # Apply custom settings if custom_settings: # Retrieve parameters for the image processing params_df = image_processing_params_df[ image_processing_params_df["Name"] == image_processing ] # Process parameters for each image processing technique and store in a dictionary image_processings_params[image_processing] = utils.process_image_parameters( params_df, image_processing ) else: # Use default settings if customization is not selected image_processings_params[image_processing] = utils.get_default_params( image_processing ) # Check for errors in the selected parameters by applying them to a sample image ( error_flag, processed_first_image, ) = image_processing_functions.apply_and_test_image_processing( image_processing, image_processings_params[image_processing], uploaded_first_image, input_mapping_dict[image_processing], ) # If there is an error in the parameters, set the global error flag if error_flag: error_in_parameters = True else: # If no error, display the original and processed images side by side # Display the original and processed images in their respective placeholders with original_image_placeholder: st.image( uploaded_first_image, caption="Original Image", use_column_width=True, clamp=True, ) with processed_image_placeholder: st.image( processed_first_image, caption="Processed Image", use_column_width=True, clamp=True, ) # Update the base image with the previously processed image output uploaded_first_image = processed_first_image ####################################################################################################### # Display selected image processing technique parameters as DataFrame ####################################################################################################### # Check if any image processings have been defined if (image_processings_params.keys()) and (not error_in_parameters): # Create a dropdown for selecting an image processing technique or 'All' selected_image_processing = st.selectbox( "Select image processing technique", options=["All"] + list(image_processings_params.keys()), ) else: selected_image_processing = None # Create the DataFrame from the accumulated data image_processings_df = image_processing_functions.create_image_processings_dataframe( image_processings_params, image_processing_params_df ) image_processings_df["Value"] = image_processings_df["Value"].astype( str ) # Ensure consistent data types and handle potential serialization issues # Filter the DataFrame based on the selected image processing if selected_image_processing != "All": filtered_image_processings_df = image_processings_df[ image_processings_df["image_processing"] == selected_image_processing ] else: filtered_image_processings_df = image_processings_df # Check if the filtered dataframe is not empty and the selected configurations are valid if (not filtered_image_processings_df.empty) and (not error_in_parameters): # Display the DataFrame in Streamlit and use the full width of the container st.dataframe(filtered_image_processings_df, use_container_width=False) # Display code and description code_placeholder = st.empty() ####################################################################################################### # Process images and download processed images ####################################################################################################### # Proceed if inputs are valid, techniques selected, and no errors in configurations if ( st.session_state["is_valid"] and (len(selected_image_processings) > 0) and not error_in_parameters ): # Create two columns col1, col2 = st.columns(2) # Allow user to specify the number of variations to be generated num_variations = col1.number_input( "Set the number of variations to be generated", min_value=1, max_value=3, step=1, ) # Checkbox to include original images and labels in the output with col2: for top_padding in range(2): # Top padding st.write("") include_original = st.checkbox( "Include original images and labels in output", value=False ) # Display code and download once all inputs are available with code_placeholder: # Generate the code with the function if len(st.session_state["label_files"]) == 0: generated_code = utils.generate_python_code_images( image_processings_params, num_variations, include_original, ) else: generated_code = ( image_processing_functions.generate_python_code_images_labels( image_processings_params, num_variations, include_original, ) ) # Display the generated Python code with a description and provide a download button in the Streamlit app image_processing_functions.display_code_and_download_button(generated_code) # Create two columns col1, col2 = st.columns(2) # Add a button for the user to confirm their selections and proceed with processing if col1.button("Accept and Process", use_container_width=True): # Call the function and store the results image_processing_functions.process_images_and_labels( st.session_state["image_files"], st.session_state["label_files"], selected_image_processings, image_processings_params, num_variations, include_original, ) # Download button col2.download_button( label="Download", data=st.session_state["zip_data_processing"], file_name="processed_images.zip", mime="application/zip", use_container_width=True, disabled=False, ) else: if (len(selected_image_processings) == 0) and st.session_state["is_valid"]: # Inform the user that no image processing techniques have been selected st.warning("Please select at least one image processing technique.", icon="⚠️") if error_in_parameters and st.session_state["is_valid"]: # Inform the user that there are errors in parameters st.warning( "There are errors in the image processing parameters. Please review your selections.", icon="⚠️", ) ####################################################################################################### # Display original and processed images ####################################################################################################### if ( "image_repository_preprocessing" in st.session_state and "processed_image_mapping_procesing" in st.session_state ): # Number of unique images num_unique_images = len(st.session_state["unique_images_names"]) if num_unique_images > 1: # Create a slider to select an image index from the processed image mapping selected_image_index = st.slider( "Select an Image", min_value=1, max_value=num_unique_images, # Set the maximum to the number of unique images step=1, ) else: selected_image_index = 1 # Retrieve the name of the selected original image using the slider index selected_original_image_name = st.session_state["unique_images_names"][ selected_image_index - 1 ] # Retrieve the names of all processed variants for the selected original image processed_variant_names = st.session_state["processed_image_mapping_procesing"].get( selected_original_image_name, [] ) # Combine the original image name with its processed variants all_image_names = [selected_original_image_name] + processed_variant_names # Number of images and columns num_images = len(all_image_names) num_columns = 4 # Display images in a grid of 4 columns and dynamic number of rows for i in range(0, num_images, num_columns): # Create a row of columns cols = st.columns(num_columns) for j in range(num_columns): # Calculate the current image index image_index = i + j if image_index < num_images: # Get the image name and data from the repository image_name = all_image_names[image_index] image_data = st.session_state["image_repository_preprocessing"][ image_name ]["image"] # Display the image in the respective column with caption with cols[j]: st.image( image_data, clamp=True, caption=image_name, use_column_width=True, ) # if st.button("Run"): # utils.button_click(on_click=None)