File size: 23,678 Bytes
3d90a2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# Set the page config
import streamlit as st

st.set_page_config(
    page_title="Image Augmentation",
    page_icon=":open_file_folder:",
    layout="wide",
    initial_sidebar_state="collapsed",
)

# Importing necessary libraries
import cv2
import utils
import numpy as np
import Functions.image_augmentation_functions as augmentation_functions


# Load augmentation technique parameters and details from an Excel file
augmentation_params_df = utils.load_data_from_excel(
    "packages_db.xlsx", "augmentation_parameters"
)
augmentation_details_df = utils.load_data_from_excel(
    "packages_db.xlsx", "augmentation_details"
)

# Display the page title
st.title("Image Augmentation")

# # Clear the Streamlit session state on the first load of the page
# utils.clear_session_state_on_first_load("image_augmentation_clear")

# List of session state keys to initialize if they are not already present
session_state_keys = [
    "file_uploader_key_augmentation",
    "select_processing_technique_key_augmentation",
    "selected_option_key_augmentation",
    "class_labels_input_key_augmentation",
    "bbox1_key",
    "bbox2_key",
    "bbox3_key",
    "bbox4_key",
    "bbox5_key",
]

# Iterate through each session state key
for key in session_state_keys:
    # Check if the key is not already in the session state
    if key not in st.session_state:
        # Initialize the key with a dictionary containing itself set to True
        st.session_state[key] = {key: True}

# Initialize session state variables if not present
if "validation_triggered" not in st.session_state:
    st.session_state["validation_triggered"] = False

if "uploaded_files_cache_augmentation" not in st.session_state:
    st.session_state["uploaded_files_cache_augmentation"] = False

if "zip_data_augmentation" not in st.session_state:
    st.session_state["zip_data_augmentation"] = ""

# Interface for uploading an images and labels
utils.display_file_uploader(
    "uploaded_files",
    "Choose images and labels...",
    st.session_state["file_uploader_key_augmentation"],
    st.session_state["uploaded_files_cache_augmentation"],
)

# Dropdown for selecting label type
label_type = st.selectbox(
    "Choose the label type for your augmentation process:",
    ["Masks", "Bboxes"],
    index=1,
    on_change=utils.reset_validation_trigger,
    key=st.session_state["selected_option_key_augmentation"],
)

# Choosing parameters based on the label type selected by the user
if label_type == "Bboxes":
    # If the selected label type is Bboxes, call the bbox_params function
    label_input_parameters = augmentation_functions.bbox_params()
elif label_type == "Masks":
    # If the selected label type is Masks
    label_input_parameters = None


# Text area for user to input class labels
class_labels_input = st.text_area(
    "Enter class labels, separated by commas:",
    utils.sample_class_labels,
    on_change=utils.reset_validation_trigger,
    key=st.session_state["class_labels_input_key_augmentation"],
)  # Example default values
class_labels_input = (
    class_labels_input.strip()
)  # Remove unecessary space form start and end


# Generating a dictionary mapping class IDs to their respective labels
try:
    class_labels = [
        label.strip() for label in class_labels_input.split(",") if label.strip()
    ]
    class_dict = {
        i + 1: label for i, label in enumerate(class_labels)
    }  # Shifting class labels (keys) by 1, since 0 is reserved for the background
    # Invert the class_dict to map class names to class IDs
    class_names_to_ids = {v: k for k, v in class_dict.items()}

    colors = augmentation_functions.generate_unique_colors(class_dict.keys())
except Exception as e:
    st.warning(
        "Invalid format for class labels. Please enter labels separated by commas.",
        icon="⚠️",
    )
    class_dict, class_names_to_ids = (
        {},
        {},
    )  # Keeping class_dict and class_names_to_ids as an empty


# Note to users
st.markdown(
    """

    <div style='text-align: justify;'>

        <b>Note to Users:</b>

        <ul>

            <li>The <i>first uploaded image</i> will be used for demonstration purposes and to validate parameters for augmentation techniques.</li>

            <li>Uploading <i>labels is optional</i>. If no labels are uploaded, the output will consist solely of processed images.</li>

            <li>When moving to another page or if you wish to upload a new set of images and labels, don't forget to hit the <b>Reset</b> button. This helps in faster computation and frees up unused memory, ensuring smoother operation.</li>

            <li>Select the class labels, label type and label parameters before uploading large data for faster computation and more efficient processing.</li>

        </ul>

    </div>

    """,
    unsafe_allow_html=True,
)

# List of session state variables to initialize
session_vars = [
    "is_valid",
    "image_files",
    "label_files",
    "first_image_file",
    "first_label_file",
]

# Initialize each variable as None if it doesn't exist in the session state
for var in session_vars:
    if var not in st.session_state:
        st.session_state[var] = None

# Create two columns
col1, col2 = st.columns(2)

# Button to trigger validation
if (
    col1.button("Validate Input", use_container_width=True)
    and not st.session_state["validation_triggered"]
):
    st.session_state["validation_triggered"] = True
    st.session_state["uploaded_files_cache_augmentation"] = True

    (
        st.session_state["is_valid"],
        st.session_state["image_files"],
        st.session_state["label_files"],
        st.session_state["first_image_file"],
        st.session_state["first_label_file"],
    ) = augmentation_functions.check_valid_labels(
        st.session_state["uploaded_files"], label_type, class_dict
    )

elif st.session_state["validation_triggered"]:
    pass

else:
    st.session_state["is_valid"] = False
    st.warning(
        "Please upload images and labels and click **Validate Input**.", icon="⚠️"
    )

with col2:
    # Check if the 'Reset' button is pressed
    if st.button("Reset", use_container_width=True):
        # Toggle the keys for file uploader and processing technique to reset their states
        current_value = st.session_state["file_uploader_key_augmentation"][
            "file_uploader_key_augmentation"
        ]
        updated_value = not current_value  # Invert the current value

        # Iterate through each session state key
        for session_state_key in session_state_keys:
            # Update each key in the session state with the toggled value
            st.session_state[session_state_key] = {session_state_key: updated_value}

        # Clear all other session state keys except for widget_state_keys
        for key in list(st.session_state.keys()):
            if key not in session_state_keys:
                del st.session_state[key]

        # Clear global variables except for protected and Streamlit module
        global_vars = list(globals().keys())
        vars_to_delete = [
            var for var in global_vars if not var.startswith("_") and var != "st"
        ]
        for var in vars_to_delete:
            del globals()[var]

        # Clear the Streamlit caches
        st.cache_resource.clear()
        st.cache_data.clear()

        # Rerun the app to reflect the reset state
        st.rerun()

# Fetching the names of techniques applicable to the selected option
available_augmentations = augmentation_functions.get_applicable_techniques(
    augmentation_details_df, label_type
)

# Mapping each image processing techniques to its corresponding image types
input_mapping_dict = utils.technique_image_input_mapping(
    available_augmentations, augmentation_details_df
)

# Present the option to select augmentation techniques only if the uploaded files are validated successfully
if st.session_state["is_valid"]:
    selected_augmentations = st.multiselect(
        "Select augmentation technique(s)",
        available_augmentations,
        key=st.session_state["select_processing_technique_key_augmentation"],
    )

    # Read the first uploaded image into a NumPy array
    st.session_state["first_image_file"].seek(0)  # Reset file pointer to start
    file_bytes_first_image = np.frombuffer(
        st.session_state["first_image_file"].read(), dtype=np.uint8
    )
    uploaded_first_image = cv2.cvtColor(
        cv2.imdecode(file_bytes_first_image, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB
    )

    # # Resize the image
    # uploaded_first_image = cv2.resize(uploaded_first_image, (256, 256))

else:
    # Reset selected techniques to empty if input validation fails
    selected_augmentations = []


#######################################################################################################
# Build custom augmentation pipeline
#######################################################################################################


# Store parameters for each selected augmentation technique
augmentations_params = {}

# Initialize a flag to track if any error exists
error_in_parameters = False

# Loop through each selected augmentation techniques to set up parameters
for augmentation in selected_augmentations:
    with st.expander(f"{augmentation}"):
        # Retrieve augmentation details from the database
        augmentation_info = augmentation_details_df[
            augmentation_details_df["Name"] == augmentation
        ]

        # Set up columns for displaying details and image placeholders
        details_col, image_col = st.columns([7, 3])

        with details_col:
            # Display the description for the augmentation technique
            augmentation_description = (
                augmentation_info["Description"].iloc[0]
                if not augmentation_info.empty
                else "No description available."
            )
            st.markdown(
                f"<div style='text-align: justify;'><b>Description:</b> {augmentation_description}</div>",
                unsafe_allow_html=True,
            )

            # Display the category for the augmentation
            augmentation_category = (
                augmentation_info["Category"].iloc[0]
                if not augmentation_info.empty
                else "Unknown"
            )
            st.write("Category:", augmentation_category)

            # Retrieve the source code link for the augmentation
            augmentation_source_code = (
                augmentation_info["Source Code Link"].iloc[0]
                if not augmentation_info.empty
                else "www.google.com"
            )

            # Set up columns for displaying source code button and custom settings checkbox
            source_code_col, custo_setting_col = st.columns(2)

            source_code_col.link_button("Source Code", augmentation_source_code)

            # Toggle for custom settings
            custom_settings = custo_setting_col.checkbox(
                f"Customize {augmentation}", key=f"toggle_{augmentation}"
            )

        with image_col:
            # Create two columns
            col1, col2 = st.columns(2)
            original_image_placeholder = col1.container(height=150, border=False)
            processed_image_placeholder = col2.container(height=150, border=False)

        # Apply custom settings
        if custom_settings:
            # Retrieve parameters for the augmentation
            params_df = augmentation_params_df[
                augmentation_params_df["Name"] == augmentation
            ]

            # Process parameters for each augmentation technique and store in a dictionary
            augmentations_params[augmentation] = utils.process_image_parameters(
                params_df, augmentation
            )

        else:
            # Use default settings if customization is not selected
            augmentations_params[augmentation] = utils.get_default_params(augmentation)

        # Check for errors in the selected parameters by applying them to a sample image
        (
            error_flag,
            processed_first_image,
        ) = augmentation_functions.apply_and_test_augmentation(
            augmentation,
            augmentations_params[augmentation],
            uploaded_first_image,
            st.session_state["first_label_file"],
            label_type,
            label_input_parameters,
            input_mapping_dict[augmentation],
        )

        # If there is an error in the parameters, set the global error flag
        if error_flag:
            error_in_parameters = True
        else:
            # If no error, display the original and processed images side by side
            # Display the original and processed images in their respective placeholders
            with original_image_placeholder:
                st.image(
                    uploaded_first_image,
                    caption="Original Image",
                    use_column_width=True,
                    clamp=True,
                )

            with processed_image_placeholder:
                st.image(
                    processed_first_image,
                    caption="Processed Image",
                    use_column_width=True,
                    clamp=True,
                )

            # Update the base image with the previously processed image output
            uploaded_first_image = processed_first_image


#######################################################################################################
# Display selected augmentation technique parameters as DataFrame
#######################################################################################################


# Check if any augmentations have been defined
if (augmentations_params.keys()) and (not error_in_parameters):
    # Create a dropdown for selecting an augmentation technique or 'All'
    selected_augmentation = st.selectbox(
        "Select augmentation technique",
        options=["All"] + list(augmentations_params.keys()),
    )
else:
    selected_augmentation = None

# Create the DataFrame from the accumulated data
augmentations_df = augmentation_functions.create_augmentations_dataframe(
    augmentations_params, augmentation_params_df
)
augmentations_df["Value"] = augmentations_df["Value"].astype(
    str
)  # Ensure consistent data types and handle potential serialization issues

# Filter the DataFrame based on the selected augmentation
if selected_augmentation != "All":
    filtered_augmentations_df = augmentations_df[
        augmentations_df["augmentation"] == selected_augmentation
    ]
else:
    filtered_augmentations_df = augmentations_df

# Check if the filtered dataframe is not empty and the selected configurations are valid
if (not filtered_augmentations_df.empty) and (not error_in_parameters):
    # Display the DataFrame in Streamlit and use the full width of the container
    st.dataframe(filtered_augmentations_df, use_container_width=False)

    # Display code and description
    code_placeholder = st.empty()


#######################################################################################################
# Process images and download processed images
#######################################################################################################


# Proceed if inputs are valid, techniques selected, and no errors in configurations
if (
    st.session_state["is_valid"]
    and (len(selected_augmentations) > 0)
    and not error_in_parameters
):
    # Create two columns
    col1, col2 = st.columns(2)

    # Allow user to specify the number of variations to be generated
    num_variations = col1.number_input(
        "Set the number of variations to be generated",
        min_value=1,
        max_value=3,
        step=1,
    )

    # Checkbox to include original images and labels in the output
    with col2:
        for top_padding in range(2):  # Top padding
            st.write("")

        include_original = st.checkbox(
            "Include original images and labels in output", value=False
        )

    # Display code and download once all inputs are available
    with code_placeholder:
        # Generate the code with the function
        if len(st.session_state["label_files"]) == 0:
            generated_code = utils.generate_python_code_images(
                augmentations_params,
                num_variations,
                include_original,
            )
        elif label_type == "Bboxes":  # Selected label type is Bboxes
            generated_code = augmentation_functions.generate_python_code_bboxes(
                augmentations_params,
                label_input_parameters,
                num_variations,
                include_original,
            )
        elif label_type == "Masks":  # Selected label type is Bboxes
            generated_code = augmentation_functions.generate_python_code_masks(
                augmentations_params,
                label_input_parameters,
                num_variations,
                include_original,
            )

        # Display the generated Python code with a description and provide a download button in the Streamlit app
        augmentation_functions.display_code_and_download_button(generated_code)

    # Create two columns
    col1, col2 = st.columns(2)

    # Add a button for the user to confirm their selections and proceed with processing
    if col1.button("Accept and Process", use_container_width=True):
        # Call the function and store the results
        augmentation_functions.process_images_and_labels(
            st.session_state["image_files"],
            st.session_state["label_files"],
            selected_augmentations,
            augmentations_params,
            label_type,
            label_input_parameters,
            num_variations,
            include_original,
            class_dict,
        )

    # Download button
    col2.download_button(
        label="Download",
        data=st.session_state["zip_data_augmentation"],
        file_name="augmented_images.zip",
        mime="application/zip",
        use_container_width=True,
        disabled=False,
    )

else:
    if (len(selected_augmentations) == 0) and st.session_state["is_valid"]:
        # Inform the user that no augmentation techniques have been selected
        st.warning("Please select at least one augmentation technique.", icon="⚠️")

    if error_in_parameters and st.session_state["is_valid"]:
        # Inform the user that there are errors in parameters
        st.warning(
            "There are errors in the augmentation parameters. Please review your selections.",
            icon="⚠️",
        )


#######################################################################################################
# Display original and processed images
#######################################################################################################


# Check if image_repository and processed_image_mapping exist in session_state
if (
    "image_repository_augmentation" in st.session_state
    and "processed_image_mapping_augmentation" in st.session_state
):
    # Number of unique images
    num_unique_images = len(st.session_state["unique_images_names"])

    if num_unique_images > 1:
        # Create a slider to select an image index from the processed image mapping
        selected_image_index = st.slider(
            "Select an Image",
            min_value=1,
            max_value=num_unique_images,  # Set the maximum to the number of unique images
            step=1,
        )
    else:
        selected_image_index = 1

    # Retrieve the name of the selected original image using the slider index
    selected_original_image_name = st.session_state["unique_images_names"][
        selected_image_index - 1
    ]

    # Retrieve the names of all processed variants for the selected original image
    processed_variant_names = st.session_state[
        "processed_image_mapping_augmentation"
    ].get(selected_original_image_name, [])

    # Combine the original image name with its processed variants
    all_image_names = [selected_original_image_name] + processed_variant_names

    if len(st.session_state["label_files"]) > 0:
        # Options for displaying labels on the images
        label_display_options = ["No Label", "All Labels", "Specific Labels"]

        # Select box for the user to choose how labels should be displayed on the images
        selected_label_display_option = st.selectbox(
            "Choose how to display labels:",
            label_display_options,
            index=0,  # Default option is 'No Label'
        )

        # If 'All Labels' option is selected, include all class IDs
        if selected_label_display_option == "All Labels":
            labels_to_plot = list(class_dict.keys())
        # If 'Specific Labels' option is selected, allow user to select specific class IDs
        elif selected_label_display_option == "Specific Labels":
            selected_class_names = st.multiselect(
                "Select specific labels to display",
                list(class_names_to_ids.keys()),
                class_dict[1],
            )
            labels_to_plot = [class_names_to_ids[name] for name in selected_class_names]
    else:
        selected_label_display_option = "No Label"

    # Display images in a grid
    num_images = len(all_image_names)
    num_columns = 4
    for i in range(0, num_images, num_columns):
        cols = st.columns(num_columns)
        for j in range(num_columns):
            image_index = i + j
            if image_index < num_images:
                image_name = all_image_names[image_index]
                image_data = st.session_state["image_repository_augmentation"][
                    image_name
                ]["image"]
                label_file = st.session_state["image_repository_augmentation"][
                    image_name
                ]["label"]

                # Overlay labels on the image based on the selected option
                if selected_label_display_option in ["All Labels", "Specific Labels"]:
                    # Overlay labels if selected
                    modified_image = augmentation_functions.overlay_labels(
                        image=image_data.copy(),
                        labels_to_plot=labels_to_plot,
                        label_file=label_file,
                        label_type=label_type,
                        colors=colors,
                        class_dict=class_dict,
                    )
                else:
                    # Use the original image without overlay if 'No Label' is selected
                    modified_image = image_data

                # Display the image in the respective column with a caption
                with cols[j]:
                    st.image(
                        modified_image,
                        clamp=True,
                        caption=image_name,
                        use_column_width=True,
                    )