Spaces:
Sleeping
Sleeping
File size: 23,678 Bytes
3d90a2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
# Set the page config
import streamlit as st
st.set_page_config(
page_title="Image Augmentation",
page_icon=":open_file_folder:",
layout="wide",
initial_sidebar_state="collapsed",
)
# Importing necessary libraries
import cv2
import utils
import numpy as np
import Functions.image_augmentation_functions as augmentation_functions
# Load augmentation technique parameters and details from an Excel file
augmentation_params_df = utils.load_data_from_excel(
"packages_db.xlsx", "augmentation_parameters"
)
augmentation_details_df = utils.load_data_from_excel(
"packages_db.xlsx", "augmentation_details"
)
# Display the page title
st.title("Image Augmentation")
# # Clear the Streamlit session state on the first load of the page
# utils.clear_session_state_on_first_load("image_augmentation_clear")
# List of session state keys to initialize if they are not already present
session_state_keys = [
"file_uploader_key_augmentation",
"select_processing_technique_key_augmentation",
"selected_option_key_augmentation",
"class_labels_input_key_augmentation",
"bbox1_key",
"bbox2_key",
"bbox3_key",
"bbox4_key",
"bbox5_key",
]
# Iterate through each session state key
for key in session_state_keys:
# Check if the key is not already in the session state
if key not in st.session_state:
# Initialize the key with a dictionary containing itself set to True
st.session_state[key] = {key: True}
# Initialize session state variables if not present
if "validation_triggered" not in st.session_state:
st.session_state["validation_triggered"] = False
if "uploaded_files_cache_augmentation" not in st.session_state:
st.session_state["uploaded_files_cache_augmentation"] = False
if "zip_data_augmentation" not in st.session_state:
st.session_state["zip_data_augmentation"] = ""
# Interface for uploading an images and labels
utils.display_file_uploader(
"uploaded_files",
"Choose images and labels...",
st.session_state["file_uploader_key_augmentation"],
st.session_state["uploaded_files_cache_augmentation"],
)
# Dropdown for selecting label type
label_type = st.selectbox(
"Choose the label type for your augmentation process:",
["Masks", "Bboxes"],
index=1,
on_change=utils.reset_validation_trigger,
key=st.session_state["selected_option_key_augmentation"],
)
# Choosing parameters based on the label type selected by the user
if label_type == "Bboxes":
# If the selected label type is Bboxes, call the bbox_params function
label_input_parameters = augmentation_functions.bbox_params()
elif label_type == "Masks":
# If the selected label type is Masks
label_input_parameters = None
# Text area for user to input class labels
class_labels_input = st.text_area(
"Enter class labels, separated by commas:",
utils.sample_class_labels,
on_change=utils.reset_validation_trigger,
key=st.session_state["class_labels_input_key_augmentation"],
) # Example default values
class_labels_input = (
class_labels_input.strip()
) # Remove unecessary space form start and end
# Generating a dictionary mapping class IDs to their respective labels
try:
class_labels = [
label.strip() for label in class_labels_input.split(",") if label.strip()
]
class_dict = {
i + 1: label for i, label in enumerate(class_labels)
} # Shifting class labels (keys) by 1, since 0 is reserved for the background
# Invert the class_dict to map class names to class IDs
class_names_to_ids = {v: k for k, v in class_dict.items()}
colors = augmentation_functions.generate_unique_colors(class_dict.keys())
except Exception as e:
st.warning(
"Invalid format for class labels. Please enter labels separated by commas.",
icon="⚠️",
)
class_dict, class_names_to_ids = (
{},
{},
) # Keeping class_dict and class_names_to_ids as an empty
# Note to users
st.markdown(
"""
<div style='text-align: justify;'>
<b>Note to Users:</b>
<ul>
<li>The <i>first uploaded image</i> will be used for demonstration purposes and to validate parameters for augmentation techniques.</li>
<li>Uploading <i>labels is optional</i>. If no labels are uploaded, the output will consist solely of processed images.</li>
<li>When moving to another page or if you wish to upload a new set of images and labels, don't forget to hit the <b>Reset</b> button. This helps in faster computation and frees up unused memory, ensuring smoother operation.</li>
<li>Select the class labels, label type and label parameters before uploading large data for faster computation and more efficient processing.</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
# List of session state variables to initialize
session_vars = [
"is_valid",
"image_files",
"label_files",
"first_image_file",
"first_label_file",
]
# Initialize each variable as None if it doesn't exist in the session state
for var in session_vars:
if var not in st.session_state:
st.session_state[var] = None
# Create two columns
col1, col2 = st.columns(2)
# Button to trigger validation
if (
col1.button("Validate Input", use_container_width=True)
and not st.session_state["validation_triggered"]
):
st.session_state["validation_triggered"] = True
st.session_state["uploaded_files_cache_augmentation"] = True
(
st.session_state["is_valid"],
st.session_state["image_files"],
st.session_state["label_files"],
st.session_state["first_image_file"],
st.session_state["first_label_file"],
) = augmentation_functions.check_valid_labels(
st.session_state["uploaded_files"], label_type, class_dict
)
elif st.session_state["validation_triggered"]:
pass
else:
st.session_state["is_valid"] = False
st.warning(
"Please upload images and labels and click **Validate Input**.", icon="⚠️"
)
with col2:
# Check if the 'Reset' button is pressed
if st.button("Reset", use_container_width=True):
# Toggle the keys for file uploader and processing technique to reset their states
current_value = st.session_state["file_uploader_key_augmentation"][
"file_uploader_key_augmentation"
]
updated_value = not current_value # Invert the current value
# Iterate through each session state key
for session_state_key in session_state_keys:
# Update each key in the session state with the toggled value
st.session_state[session_state_key] = {session_state_key: updated_value}
# Clear all other session state keys except for widget_state_keys
for key in list(st.session_state.keys()):
if key not in session_state_keys:
del st.session_state[key]
# Clear global variables except for protected and Streamlit module
global_vars = list(globals().keys())
vars_to_delete = [
var for var in global_vars if not var.startswith("_") and var != "st"
]
for var in vars_to_delete:
del globals()[var]
# Clear the Streamlit caches
st.cache_resource.clear()
st.cache_data.clear()
# Rerun the app to reflect the reset state
st.rerun()
# Fetching the names of techniques applicable to the selected option
available_augmentations = augmentation_functions.get_applicable_techniques(
augmentation_details_df, label_type
)
# Mapping each image processing techniques to its corresponding image types
input_mapping_dict = utils.technique_image_input_mapping(
available_augmentations, augmentation_details_df
)
# Present the option to select augmentation techniques only if the uploaded files are validated successfully
if st.session_state["is_valid"]:
selected_augmentations = st.multiselect(
"Select augmentation technique(s)",
available_augmentations,
key=st.session_state["select_processing_technique_key_augmentation"],
)
# Read the first uploaded image into a NumPy array
st.session_state["first_image_file"].seek(0) # Reset file pointer to start
file_bytes_first_image = np.frombuffer(
st.session_state["first_image_file"].read(), dtype=np.uint8
)
uploaded_first_image = cv2.cvtColor(
cv2.imdecode(file_bytes_first_image, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB
)
# # Resize the image
# uploaded_first_image = cv2.resize(uploaded_first_image, (256, 256))
else:
# Reset selected techniques to empty if input validation fails
selected_augmentations = []
#######################################################################################################
# Build custom augmentation pipeline
#######################################################################################################
# Store parameters for each selected augmentation technique
augmentations_params = {}
# Initialize a flag to track if any error exists
error_in_parameters = False
# Loop through each selected augmentation techniques to set up parameters
for augmentation in selected_augmentations:
with st.expander(f"{augmentation}"):
# Retrieve augmentation details from the database
augmentation_info = augmentation_details_df[
augmentation_details_df["Name"] == augmentation
]
# Set up columns for displaying details and image placeholders
details_col, image_col = st.columns([7, 3])
with details_col:
# Display the description for the augmentation technique
augmentation_description = (
augmentation_info["Description"].iloc[0]
if not augmentation_info.empty
else "No description available."
)
st.markdown(
f"<div style='text-align: justify;'><b>Description:</b> {augmentation_description}</div>",
unsafe_allow_html=True,
)
# Display the category for the augmentation
augmentation_category = (
augmentation_info["Category"].iloc[0]
if not augmentation_info.empty
else "Unknown"
)
st.write("Category:", augmentation_category)
# Retrieve the source code link for the augmentation
augmentation_source_code = (
augmentation_info["Source Code Link"].iloc[0]
if not augmentation_info.empty
else "www.google.com"
)
# Set up columns for displaying source code button and custom settings checkbox
source_code_col, custo_setting_col = st.columns(2)
source_code_col.link_button("Source Code", augmentation_source_code)
# Toggle for custom settings
custom_settings = custo_setting_col.checkbox(
f"Customize {augmentation}", key=f"toggle_{augmentation}"
)
with image_col:
# Create two columns
col1, col2 = st.columns(2)
original_image_placeholder = col1.container(height=150, border=False)
processed_image_placeholder = col2.container(height=150, border=False)
# Apply custom settings
if custom_settings:
# Retrieve parameters for the augmentation
params_df = augmentation_params_df[
augmentation_params_df["Name"] == augmentation
]
# Process parameters for each augmentation technique and store in a dictionary
augmentations_params[augmentation] = utils.process_image_parameters(
params_df, augmentation
)
else:
# Use default settings if customization is not selected
augmentations_params[augmentation] = utils.get_default_params(augmentation)
# Check for errors in the selected parameters by applying them to a sample image
(
error_flag,
processed_first_image,
) = augmentation_functions.apply_and_test_augmentation(
augmentation,
augmentations_params[augmentation],
uploaded_first_image,
st.session_state["first_label_file"],
label_type,
label_input_parameters,
input_mapping_dict[augmentation],
)
# If there is an error in the parameters, set the global error flag
if error_flag:
error_in_parameters = True
else:
# If no error, display the original and processed images side by side
# Display the original and processed images in their respective placeholders
with original_image_placeholder:
st.image(
uploaded_first_image,
caption="Original Image",
use_column_width=True,
clamp=True,
)
with processed_image_placeholder:
st.image(
processed_first_image,
caption="Processed Image",
use_column_width=True,
clamp=True,
)
# Update the base image with the previously processed image output
uploaded_first_image = processed_first_image
#######################################################################################################
# Display selected augmentation technique parameters as DataFrame
#######################################################################################################
# Check if any augmentations have been defined
if (augmentations_params.keys()) and (not error_in_parameters):
# Create a dropdown for selecting an augmentation technique or 'All'
selected_augmentation = st.selectbox(
"Select augmentation technique",
options=["All"] + list(augmentations_params.keys()),
)
else:
selected_augmentation = None
# Create the DataFrame from the accumulated data
augmentations_df = augmentation_functions.create_augmentations_dataframe(
augmentations_params, augmentation_params_df
)
augmentations_df["Value"] = augmentations_df["Value"].astype(
str
) # Ensure consistent data types and handle potential serialization issues
# Filter the DataFrame based on the selected augmentation
if selected_augmentation != "All":
filtered_augmentations_df = augmentations_df[
augmentations_df["augmentation"] == selected_augmentation
]
else:
filtered_augmentations_df = augmentations_df
# Check if the filtered dataframe is not empty and the selected configurations are valid
if (not filtered_augmentations_df.empty) and (not error_in_parameters):
# Display the DataFrame in Streamlit and use the full width of the container
st.dataframe(filtered_augmentations_df, use_container_width=False)
# Display code and description
code_placeholder = st.empty()
#######################################################################################################
# Process images and download processed images
#######################################################################################################
# Proceed if inputs are valid, techniques selected, and no errors in configurations
if (
st.session_state["is_valid"]
and (len(selected_augmentations) > 0)
and not error_in_parameters
):
# Create two columns
col1, col2 = st.columns(2)
# Allow user to specify the number of variations to be generated
num_variations = col1.number_input(
"Set the number of variations to be generated",
min_value=1,
max_value=3,
step=1,
)
# Checkbox to include original images and labels in the output
with col2:
for top_padding in range(2): # Top padding
st.write("")
include_original = st.checkbox(
"Include original images and labels in output", value=False
)
# Display code and download once all inputs are available
with code_placeholder:
# Generate the code with the function
if len(st.session_state["label_files"]) == 0:
generated_code = utils.generate_python_code_images(
augmentations_params,
num_variations,
include_original,
)
elif label_type == "Bboxes": # Selected label type is Bboxes
generated_code = augmentation_functions.generate_python_code_bboxes(
augmentations_params,
label_input_parameters,
num_variations,
include_original,
)
elif label_type == "Masks": # Selected label type is Bboxes
generated_code = augmentation_functions.generate_python_code_masks(
augmentations_params,
label_input_parameters,
num_variations,
include_original,
)
# Display the generated Python code with a description and provide a download button in the Streamlit app
augmentation_functions.display_code_and_download_button(generated_code)
# Create two columns
col1, col2 = st.columns(2)
# Add a button for the user to confirm their selections and proceed with processing
if col1.button("Accept and Process", use_container_width=True):
# Call the function and store the results
augmentation_functions.process_images_and_labels(
st.session_state["image_files"],
st.session_state["label_files"],
selected_augmentations,
augmentations_params,
label_type,
label_input_parameters,
num_variations,
include_original,
class_dict,
)
# Download button
col2.download_button(
label="Download",
data=st.session_state["zip_data_augmentation"],
file_name="augmented_images.zip",
mime="application/zip",
use_container_width=True,
disabled=False,
)
else:
if (len(selected_augmentations) == 0) and st.session_state["is_valid"]:
# Inform the user that no augmentation techniques have been selected
st.warning("Please select at least one augmentation technique.", icon="⚠️")
if error_in_parameters and st.session_state["is_valid"]:
# Inform the user that there are errors in parameters
st.warning(
"There are errors in the augmentation parameters. Please review your selections.",
icon="⚠️",
)
#######################################################################################################
# Display original and processed images
#######################################################################################################
# Check if image_repository and processed_image_mapping exist in session_state
if (
"image_repository_augmentation" in st.session_state
and "processed_image_mapping_augmentation" in st.session_state
):
# Number of unique images
num_unique_images = len(st.session_state["unique_images_names"])
if num_unique_images > 1:
# Create a slider to select an image index from the processed image mapping
selected_image_index = st.slider(
"Select an Image",
min_value=1,
max_value=num_unique_images, # Set the maximum to the number of unique images
step=1,
)
else:
selected_image_index = 1
# Retrieve the name of the selected original image using the slider index
selected_original_image_name = st.session_state["unique_images_names"][
selected_image_index - 1
]
# Retrieve the names of all processed variants for the selected original image
processed_variant_names = st.session_state[
"processed_image_mapping_augmentation"
].get(selected_original_image_name, [])
# Combine the original image name with its processed variants
all_image_names = [selected_original_image_name] + processed_variant_names
if len(st.session_state["label_files"]) > 0:
# Options for displaying labels on the images
label_display_options = ["No Label", "All Labels", "Specific Labels"]
# Select box for the user to choose how labels should be displayed on the images
selected_label_display_option = st.selectbox(
"Choose how to display labels:",
label_display_options,
index=0, # Default option is 'No Label'
)
# If 'All Labels' option is selected, include all class IDs
if selected_label_display_option == "All Labels":
labels_to_plot = list(class_dict.keys())
# If 'Specific Labels' option is selected, allow user to select specific class IDs
elif selected_label_display_option == "Specific Labels":
selected_class_names = st.multiselect(
"Select specific labels to display",
list(class_names_to_ids.keys()),
class_dict[1],
)
labels_to_plot = [class_names_to_ids[name] for name in selected_class_names]
else:
selected_label_display_option = "No Label"
# Display images in a grid
num_images = len(all_image_names)
num_columns = 4
for i in range(0, num_images, num_columns):
cols = st.columns(num_columns)
for j in range(num_columns):
image_index = i + j
if image_index < num_images:
image_name = all_image_names[image_index]
image_data = st.session_state["image_repository_augmentation"][
image_name
]["image"]
label_file = st.session_state["image_repository_augmentation"][
image_name
]["label"]
# Overlay labels on the image based on the selected option
if selected_label_display_option in ["All Labels", "Specific Labels"]:
# Overlay labels if selected
modified_image = augmentation_functions.overlay_labels(
image=image_data.copy(),
labels_to_plot=labels_to_plot,
label_file=label_file,
label_type=label_type,
colors=colors,
class_dict=class_dict,
)
else:
# Use the original image without overlay if 'No Label' is selected
modified_image = image_data
# Display the image in the respective column with a caption
with cols[j]:
st.image(
modified_image,
clamp=True,
caption=image_name,
use_column_width=True,
)
|