Spaces:
Runtime error
Runtime error
import argparse | |
from concurrent.futures import ThreadPoolExecutor | |
import torch | |
import torch.multiprocessing as mp | |
from tqdm import tqdm | |
from config import get_config | |
from style_bert_vits2.constants import Languages | |
from style_bert_vits2.logging import logger | |
from style_bert_vits2.models import commons | |
from style_bert_vits2.models.hyper_parameters import HyperParameters | |
from style_bert_vits2.nlp import cleaned_text_to_sequence, extract_bert_feature | |
from style_bert_vits2.nlp.japanese import pyopenjtalk_worker | |
from style_bert_vits2.nlp.japanese.user_dict import update_dict | |
from style_bert_vits2.utils.stdout_wrapper import SAFE_STDOUT | |
config = get_config() | |
# このプロセスからはワーカーを起動して辞書を使いたいので、ここで初期化 | |
pyopenjtalk_worker.initialize_worker() | |
# dict_data/ 以下の辞書データを pyopenjtalk に適用 | |
update_dict() | |
def process_line(x: tuple[str, bool]): | |
line, add_blank = x | |
device = config.bert_gen_config.device | |
if config.bert_gen_config.use_multi_device: | |
rank = mp.current_process()._identity | |
rank = rank[0] if len(rank) > 0 else 0 | |
if torch.cuda.is_available(): | |
gpu_id = rank % torch.cuda.device_count() | |
device = f"cuda:{gpu_id}" | |
else: | |
device = "cpu" | |
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|") | |
phone = phones.split(" ") | |
tone = [int(i) for i in tone.split(" ")] | |
word2ph = [int(i) for i in word2ph.split(" ")] | |
word2ph = [i for i in word2ph] | |
phone, tone, language = cleaned_text_to_sequence( | |
phone, tone, Languages[language_str] | |
) | |
if add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".bert.pt") | |
try: | |
bert = torch.load(bert_path) | |
assert bert.shape[-1] == len(phone) | |
except Exception: | |
bert = extract_bert_feature(text, word2ph, Languages(language_str), device) | |
assert bert.shape[-1] == len(phone) | |
torch.save(bert, bert_path) | |
preprocess_text_config = config.preprocess_text_config | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-c", "--config", type=str, default=config.bert_gen_config.config_path | |
) | |
args, _ = parser.parse_known_args() | |
config_path = args.config | |
hps = HyperParameters.load_from_json(config_path) | |
lines: list[str] = [] | |
with open(hps.data.training_files, encoding="utf-8") as f: | |
lines.extend(f.readlines()) | |
with open(hps.data.validation_files, encoding="utf-8") as f: | |
lines.extend(f.readlines()) | |
add_blank = [hps.data.add_blank] * len(lines) | |
if len(lines) != 0: | |
# pyopenjtalkの別ワーカー化により、並列処理でエラーがでる模様なので、一旦シングルスレッド強制にする | |
num_processes = 1 | |
with ThreadPoolExecutor(max_workers=num_processes) as executor: | |
_ = list( | |
tqdm( | |
executor.map(process_line, zip(lines, add_blank)), | |
total=len(lines), | |
file=SAFE_STDOUT, | |
) | |
) | |
logger.info(f"bert.pt is generated! total: {len(lines)} bert.pt files.") | |