File size: 7,070 Bytes
aee6751 ea7e2a4 aee6751 a9ded25 ea7e2a4 c23f3c2 b1d8de3 ea7e2a4 aee6751 ea7e2a4 aee6751 ea7e2a4 aee6751 ea7e2a4 aee6751 ea7e2a4 aee6751 ea7e2a4 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 ea7e2a4 aee6751 ea7e2a4 aee6751 a9ded25 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 a9ded25 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 c23f3c2 aee6751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import gradio as gr
import openai
import time
import re
import os
# Available models
MODELS = [
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
]
def create_client(api_key=None):
if api_key:
openai.api_key = api_key
openai.api_base = "https://api.sambanova.ai/v1" # Fixed Base URL
else:
openai.api_key = os.getenv("API_KEY")
openai.api_base = os.getenv("URL")
def chat_with_ai(message, chat_history, system_prompt):
messages = [
{"role": "system", "content": system_prompt},
]
for human, ai in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": ai})
messages.append({"role": "user", "content": message})
return messages
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key):
print("Starting respond function...")
create_client(api_key) # Sets api_key and api_base globally
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget))
start_time = time.time()
try:
print("Calling OpenAI API...")
completion = openai.ChatCompletion.create(
model=model,
messages=messages,
stream=False # Set to False for synchronous response
)
response = completion.choices[0].message['content']
thinking_time = time.time() - start_time
print("Response received from OpenAI API.")
return response, thinking_time
except Exception as e:
error_message = f"Error: {str(e)}"
print(error_message)
return error_message, time.time() - start_time
def parse_response(response):
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL)
answer = answer_match.group(1).strip() if answer_match else ""
reflection = reflection_match.group(1).strip() if reflection_match else ""
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL)
return answer, reflection, steps
def process_chat(message, history, model, system_prompt, thinking_budget, api_key):
print(f"Received message: {message}")
if not api_key:
print("API key missing")
return history + [("System", "Please provide your API Key before starting the chat.")]
try:
formatted_system_prompt = system_prompt.format(budget=thinking_budget)
except KeyError as e:
error_msg = f"System prompt missing placeholder: {str(e)}"
print(error_msg)
return history + [("System", error_msg)]
response, thinking_time = respond(message, history, model, formatted_system_prompt, thinking_budget, api_key)
if response.startswith("Error:"):
return history + [("System", response)]
answer, reflection, steps = parse_response(response)
formatted_response = f"**Answer:** {answer}\n\n**Reflection:** {reflection}\n\n**Thinking Steps:**\n"
for i, step in enumerate(steps, 1):
formatted_response += f"**Step {i}:** {step}\n"
formatted_response += f"\n**Thinking time:** {thinking_time:.2f} s"
print(f"Appended response: {formatted_response}")
return history + [(message, formatted_response)]
# Define the default system prompt
default_system_prompt = """
You are a helpful assistant in normal conversation.
When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully:
1. Read the given question carefully and reset counter between <count> and </count> to {budget}
2. Generate a detailed, logical step-by-step solution.
3. Enclose each step of your solution within <step> and </step> tags.
4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags <count> </count>, STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps.
6. After completing the solution steps, reorganize and synthesize the steps into the final answer within <answer> and </answer> tags.
7. Provide a critical, honest and subjective self-evaluation of your reasoning process within <reflection> and </reflection> tags.
8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags.
Example format:
<count> [starting budget] </count>
<step> [Content of step 1] </step>
<count> [remaining budget] </count>
<step> [Content of step 2] </step>
<reflection> [Evaluation of the steps so far] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
<count> [remaining budget] </count>
<step> [Content of step 3 or Content of some previous step] </step>
<count> [remaining budget] </count>
...
<step> [Content of final step] </step>
<count> [remaining budget] </count>
<answer> [Final Answer] </answer>
<reflection> [Evaluation of the solution] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
"""
with gr.Blocks() as demo:
gr.Markdown("# Llama3.1-Instruct-O1")
gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)")
with gr.Row():
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter your API key here"
)
with gr.Row():
model = gr.Dropdown(
choices=MODELS,
label="Select Model",
value=MODELS[0]
)
thinking_budget = gr.Slider(
minimum=1,
maximum=100,
value=10,
step=1,
label="Thinking Budget"
)
system_prompt = gr.Textbox(
label="System Prompt",
value=default_system_prompt,
lines=15,
interactive=True
)
with gr.Row():
msg = gr.Textbox(
label="Type your message here...",
placeholder="Enter your message..."
)
submit = gr.Button("Submit")
clear = gr.Button("Clear Chat")
chatbot = gr.Chatbot(
label="Chat History"
)
# Initialize chat history as a Gradio state
chat_history = gr.State([])
def handle_submit(message, history, model, system_prompt, thinking_budget, api_key):
updated_history = process_chat(message, history, model, system_prompt, thinking_budget, api_key)
return updated_history, ""
def handle_clear():
return [], ""
submit.click(
handle_submit,
inputs=[msg, chat_history, model, system_prompt, thinking_budget, api_key],
outputs=[chatbot, msg]
)
clear.click(
handle_clear,
inputs=None,
outputs=[chatbot, msg]
)
demo.launch() |