from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_prompt = "" system_prompt_sent = False def format_prompt(message, history): global system_prompt_sent prompt = "" if not any(f"[INST] {system_prompt} [/INST]" in user_prompt for user_prompt, _ in history): prompt += f"[INST] {system_prompt} [/INST]" system_prompt_sent = True for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=4096, top_p=0.95, repetition_penalty=1.0, ): global system_prompt_sent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text yield output return output chat_interface = gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=False, layout="vertical", height=700), concurrency_limit=9, theme="soft", submit_btn="Enviar", ) chat_interface.launch(show_api=False)