from os.path import dirname, join, basename, isfile from tqdm import tqdm from models import SyncNet_color as SyncNet from models import Wav2Lip as Wav2Lip import audio import torch from torch import nn from torch import optim import torch.backends.cudnn as cudnn from torch.utils import data as data_utils import numpy as np from glob import glob import os, random, cv2, argparse from hparams import hparams, get_image_list parser = argparse.ArgumentParser(description='Code to train the Wav2Lip model without the visual quality discriminator') parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True, type=str) parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str) parser.add_argument('--syncnet_checkpoint_path', help='Load the pre-trained Expert discriminator', required=True, type=str) parser.add_argument('--checkpoint_path', help='Resume from this checkpoint', default=None, type=str) args = parser.parse_args() global_step = 0 global_epoch = 0 use_cuda = torch.cuda.is_available() print('use_cuda: {}'.format(use_cuda)) syncnet_T = 5 syncnet_mel_step_size = 16 class Dataset(object): def __init__(self, split): self.all_videos = get_image_list(args.data_root, split) def get_frame_id(self, frame): return int(basename(frame).split('.')[0]) def get_window(self, start_frame): start_id = self.get_frame_id(start_frame) vidname = dirname(start_frame) window_fnames = [] for frame_id in range(start_id, start_id + syncnet_T): frame = join(vidname, '{}.jpg'.format(frame_id)) if not isfile(frame): return None window_fnames.append(frame) return window_fnames def read_window(self, window_fnames): if window_fnames is None: return None window = [] for fname in window_fnames: img = cv2.imread(fname) if img is None: return None try: img = cv2.resize(img, (hparams.img_size, hparams.img_size)) except Exception as e: return None window.append(img) return window def crop_audio_window(self, spec, start_frame): if type(start_frame) == int: start_frame_num = start_frame else: start_frame_num = self.get_frame_id(start_frame) # 0-indexing ---> 1-indexing start_idx = int(80. * (start_frame_num / float(hparams.fps))) end_idx = start_idx + syncnet_mel_step_size return spec[start_idx : end_idx, :] def get_segmented_mels(self, spec, start_frame): mels = [] assert syncnet_T == 5 start_frame_num = self.get_frame_id(start_frame) + 1 # 0-indexing ---> 1-indexing if start_frame_num - 2 < 0: return None for i in range(start_frame_num, start_frame_num + syncnet_T): m = self.crop_audio_window(spec, i - 2) if m.shape[0] != syncnet_mel_step_size: return None mels.append(m.T) mels = np.asarray(mels) return mels def prepare_window(self, window): # 3 x T x H x W x = np.asarray(window) / 255. x = np.transpose(x, (3, 0, 1, 2)) return x def __len__(self): return len(self.all_videos) def __getitem__(self, idx): while 1: idx = random.randint(0, len(self.all_videos) - 1) vidname = self.all_videos[idx] img_names = list(glob(join(vidname, '*.jpg'))) if len(img_names) <= 3 * syncnet_T: continue img_name = random.choice(img_names) wrong_img_name = random.choice(img_names) while wrong_img_name == img_name: wrong_img_name = random.choice(img_names) window_fnames = self.get_window(img_name) wrong_window_fnames = self.get_window(wrong_img_name) if window_fnames is None or wrong_window_fnames is None: continue window = self.read_window(window_fnames) if window is None: continue wrong_window = self.read_window(wrong_window_fnames) if wrong_window is None: continue try: wavpath = join(vidname, "audio.wav") wav = audio.load_wav(wavpath, hparams.sample_rate) orig_mel = audio.melspectrogram(wav).T except Exception as e: continue mel = self.crop_audio_window(orig_mel.copy(), img_name) if (mel.shape[0] != syncnet_mel_step_size): continue indiv_mels = self.get_segmented_mels(orig_mel.copy(), img_name) if indiv_mels is None: continue window = self.prepare_window(window) y = window.copy() window[:, :, window.shape[2]//2:] = 0. wrong_window = self.prepare_window(wrong_window) x = np.concatenate([window, wrong_window], axis=0) x = torch.FloatTensor(x) mel = torch.FloatTensor(mel.T).unsqueeze(0) indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1) y = torch.FloatTensor(y) return x, indiv_mels, mel, y def save_sample_images(x, g, gt, global_step, checkpoint_dir): x = (x.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8) g = (g.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8) gt = (gt.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8) refs, inps = x[..., 3:], x[..., :3] folder = join(checkpoint_dir, "samples_step{:09d}".format(global_step)) if not os.path.exists(folder): os.mkdir(folder) collage = np.concatenate((refs, inps, g, gt), axis=-2) for batch_idx, c in enumerate(collage): for t in range(len(c)): cv2.imwrite('{}/{}_{}.jpg'.format(folder, batch_idx, t), c[t]) logloss = nn.BCELoss() def cosine_loss(a, v, y): d = nn.functional.cosine_similarity(a, v) loss = logloss(d.unsqueeze(1), y) return loss device = torch.device("cuda" if use_cuda else "cpu") syncnet = SyncNet().to(device) for p in syncnet.parameters(): p.requires_grad = False recon_loss = nn.L1Loss() def get_sync_loss(mel, g): g = g[:, :, :, g.size(3)//2:] g = torch.cat([g[:, :, i] for i in range(syncnet_T)], dim=1) # B, 3 * T, H//2, W a, v = syncnet(mel, g) y = torch.ones(g.size(0), 1).float().to(device) return cosine_loss(a, v, y) def train(device, model, train_data_loader, test_data_loader, optimizer, checkpoint_dir=None, checkpoint_interval=None, nepochs=None): global global_step, global_epoch resumed_step = global_step while global_epoch < nepochs: print('Starting Epoch: {}'.format(global_epoch)) running_sync_loss, running_l1_loss = 0., 0. prog_bar = tqdm(enumerate(train_data_loader)) for step, (x, indiv_mels, mel, gt) in enumerate(train_data_loader): model.train() optimizer.zero_grad() # Move data to CUDA device x = x.to(device) mel = mel.to(device) indiv_mels = indiv_mels.to(device) gt = gt.to(device) g = model(indiv_mels, x) if hparams.syncnet_wt > 0.: sync_loss = get_sync_loss(mel, g) else: sync_loss = 0. l1loss = recon_loss(g, gt) loss = hparams.syncnet_wt * sync_loss + (1 - hparams.syncnet_wt) * l1loss loss.backward() optimizer.step() if global_step % checkpoint_interval == 0: save_sample_images(x, g, gt, global_step, checkpoint_dir) global_step += 1 cur_session_steps = global_step - resumed_step running_l1_loss += l1loss.item() if hparams.syncnet_wt > 0.: running_sync_loss += sync_loss.item() else: running_sync_loss += 0. if global_step == 1 or global_step % checkpoint_interval == 0: save_checkpoint( model, optimizer, global_step, checkpoint_dir, global_epoch) if global_step == 1 or global_step % hparams.eval_interval == 0: with torch.no_grad(): average_sync_loss = eval_model(test_data_loader, global_step, device, model, checkpoint_dir) if average_sync_loss < .75: hparams.set_hparam('syncnet_wt', 0.01) # without image GAN a lesser weight is sufficient prog_bar.set_description('L1: {}, Sync Loss: {}'.format(running_l1_loss / (step + 1), running_sync_loss / (step + 1))) global_epoch += 1 def eval_model(test_data_loader, global_step, device, model, checkpoint_dir): eval_steps = 40 print('Evaluating for {} steps'.format(eval_steps)) sync_losses, recon_losses = [], [] step = 0 while 1: for x, indiv_mels, mel, gt in test_data_loader: step += 1 model.eval() # Move data to CUDA device x = x.to(device) gt = gt.to(device) indiv_mels = indiv_mels.to(device) mel = mel.to(device) g = model(indiv_mels, x) sync_loss = get_sync_loss(mel, g) l1loss = recon_loss(g, gt) sync_losses.append(sync_loss.item()) recon_losses.append(l1loss.item()) if step > eval_steps: averaged_sync_loss = sum(sync_losses) / len(sync_losses) averaged_recon_loss = sum(recon_losses) / len(recon_losses) print('L1: {}, Sync loss: {}'.format(averaged_recon_loss, averaged_sync_loss)) return averaged_sync_loss def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch): checkpoint_path = join( checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step)) optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None torch.save({ "state_dict": model.state_dict(), "optimizer": optimizer_state, "global_step": step, "global_epoch": epoch, }, checkpoint_path) print("Saved checkpoint:", checkpoint_path) def _load(checkpoint_path): if use_cuda: checkpoint = torch.load(checkpoint_path) else: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) return checkpoint def load_checkpoint(path, model, optimizer, reset_optimizer=False, overwrite_global_states=True): global global_step global global_epoch print("Load checkpoint from: {}".format(path)) checkpoint = _load(path) s = checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace('module.', '')] = v model.load_state_dict(new_s) if not reset_optimizer: optimizer_state = checkpoint["optimizer"] if optimizer_state is not None: print("Load optimizer state from {}".format(path)) optimizer.load_state_dict(checkpoint["optimizer"]) if overwrite_global_states: global_step = checkpoint["global_step"] global_epoch = checkpoint["global_epoch"] return model if __name__ == "__main__": checkpoint_dir = args.checkpoint_dir # Dataset and Dataloader setup train_dataset = Dataset('train') test_dataset = Dataset('val') train_data_loader = data_utils.DataLoader( train_dataset, batch_size=hparams.batch_size, shuffle=True, num_workers=hparams.num_workers) test_data_loader = data_utils.DataLoader( test_dataset, batch_size=hparams.batch_size, num_workers=4) device = torch.device("cuda" if use_cuda else "cpu") # Model model = Wav2Lip().to(device) print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad))) optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad], lr=hparams.initial_learning_rate) if args.checkpoint_path is not None: load_checkpoint(args.checkpoint_path, model, optimizer, reset_optimizer=False) load_checkpoint(args.syncnet_checkpoint_path, syncnet, None, reset_optimizer=True, overwrite_global_states=False) if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) # Train! train(device, model, train_data_loader, test_data_loader, optimizer, checkpoint_dir=checkpoint_dir, checkpoint_interval=hparams.checkpoint_interval, nepochs=hparams.nepochs)