from os.path import dirname, join, basename, isfile from tqdm import tqdm from models import SyncNet_color as SyncNet import audio import torch from torch import nn from torch import optim import torch.backends.cudnn as cudnn from torch.utils import data as data_utils import numpy as np from glob import glob import os, random, cv2, argparse from hparams import hparams, get_image_list parser = argparse.ArgumentParser(description='Code to train the expert lip-sync discriminator') parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True) parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str) parser.add_argument('--checkpoint_path', help='Resumed from this checkpoint', default=None, type=str) args = parser.parse_args() global_step = 0 global_epoch = 0 use_cuda = torch.cuda.is_available() print('use_cuda: {}'.format(use_cuda)) syncnet_T = 5 syncnet_mel_step_size = 16 class Dataset(object): def __init__(self, split): self.all_videos = get_image_list(args.data_root, split) def get_frame_id(self, frame): return int(basename(frame).split('.')[0]) def get_window(self, start_frame): start_id = self.get_frame_id(start_frame) vidname = dirname(start_frame) window_fnames = [] for frame_id in range(start_id, start_id + syncnet_T): frame = join(vidname, '{}.jpg'.format(frame_id)) if not isfile(frame): return None window_fnames.append(frame) return window_fnames def crop_audio_window(self, spec, start_frame): # num_frames = (T x hop_size * fps) / sample_rate start_frame_num = self.get_frame_id(start_frame) start_idx = int(80. * (start_frame_num / float(hparams.fps))) end_idx = start_idx + syncnet_mel_step_size return spec[start_idx : end_idx, :] def __len__(self): return len(self.all_videos) def __getitem__(self, idx): while 1: idx = random.randint(0, len(self.all_videos) - 1) vidname = self.all_videos[idx] img_names = list(glob(join(vidname, '*.jpg'))) if len(img_names) <= 3 * syncnet_T: continue img_name = random.choice(img_names) wrong_img_name = random.choice(img_names) while wrong_img_name == img_name: wrong_img_name = random.choice(img_names) if random.choice([True, False]): y = torch.ones(1).float() chosen = img_name else: y = torch.zeros(1).float() chosen = wrong_img_name window_fnames = self.get_window(chosen) if window_fnames is None: continue window = [] all_read = True for fname in window_fnames: img = cv2.imread(fname) if img is None: all_read = False break try: img = cv2.resize(img, (hparams.img_size, hparams.img_size)) except Exception as e: all_read = False break window.append(img) if not all_read: continue try: wavpath = join(vidname, "audio.wav") wav = audio.load_wav(wavpath, hparams.sample_rate) orig_mel = audio.melspectrogram(wav).T except Exception as e: continue mel = self.crop_audio_window(orig_mel.copy(), img_name) if (mel.shape[0] != syncnet_mel_step_size): continue # H x W x 3 * T x = np.concatenate(window, axis=2) / 255. x = x.transpose(2, 0, 1) x = x[:, x.shape[1]//2:] x = torch.FloatTensor(x) mel = torch.FloatTensor(mel.T).unsqueeze(0) return x, mel, y logloss = nn.BCELoss() def cosine_loss(a, v, y): d = nn.functional.cosine_similarity(a, v) loss = logloss(d.unsqueeze(1), y) return loss def train(device, model, train_data_loader, test_data_loader, optimizer, checkpoint_dir=None, checkpoint_interval=None, nepochs=None): global global_step, global_epoch resumed_step = global_step while global_epoch < nepochs: running_loss = 0. prog_bar = tqdm(enumerate(train_data_loader)) for step, (x, mel, y) in prog_bar: model.train() optimizer.zero_grad() # Transform data to CUDA device x = x.to(device) mel = mel.to(device) a, v = model(mel, x) y = y.to(device) loss = cosine_loss(a, v, y) loss.backward() optimizer.step() global_step += 1 cur_session_steps = global_step - resumed_step running_loss += loss.item() if global_step == 1 or global_step % checkpoint_interval == 0: save_checkpoint( model, optimizer, global_step, checkpoint_dir, global_epoch) if global_step % hparams.syncnet_eval_interval == 0: with torch.no_grad(): eval_model(test_data_loader, global_step, device, model, checkpoint_dir) prog_bar.set_description('Loss: {}'.format(running_loss / (step + 1))) global_epoch += 1 def eval_model(test_data_loader, global_step, device, model, checkpoint_dir): eval_steps = 1400 print('Evaluating for {} steps'.format(eval_steps)) losses = [] while 1: for step, (x, mel, y) in enumerate(test_data_loader): model.eval() # Transform data to CUDA device x = x.to(device) mel = mel.to(device) a, v = model(mel, x) y = y.to(device) loss = cosine_loss(a, v, y) losses.append(loss.item()) if step > eval_steps: break averaged_loss = sum(losses) / len(losses) print(averaged_loss) return def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch): checkpoint_path = join( checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step)) optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None torch.save({ "state_dict": model.state_dict(), "optimizer": optimizer_state, "global_step": step, "global_epoch": epoch, }, checkpoint_path) print("Saved checkpoint:", checkpoint_path) def _load(checkpoint_path): if use_cuda: checkpoint = torch.load(checkpoint_path) else: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) return checkpoint def load_checkpoint(path, model, optimizer, reset_optimizer=False): global global_step global global_epoch print("Load checkpoint from: {}".format(path)) checkpoint = _load(path) model.load_state_dict(checkpoint["state_dict"]) if not reset_optimizer: optimizer_state = checkpoint["optimizer"] if optimizer_state is not None: print("Load optimizer state from {}".format(path)) optimizer.load_state_dict(checkpoint["optimizer"]) global_step = checkpoint["global_step"] global_epoch = checkpoint["global_epoch"] return model if __name__ == "__main__": checkpoint_dir = args.checkpoint_dir checkpoint_path = args.checkpoint_path if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) # Dataset and Dataloader setup train_dataset = Dataset('train') test_dataset = Dataset('val.txt') train_data_loader = data_utils.DataLoader( train_dataset, batch_size=hparams.syncnet_batch_size, shuffle=True, num_workers=hparams.num_workers) test_data_loader = data_utils.DataLoader( test_dataset, batch_size=hparams.syncnet_batch_size, num_workers=8) device = torch.device("cuda" if use_cuda else "cpu") # Model model = SyncNet().to(device) print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad))) optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad], lr=hparams.syncnet_lr) if checkpoint_path is not None: load_checkpoint(checkpoint_path, model, optimizer, reset_optimizer=False) train(device, model, train_data_loader, test_data_loader, optimizer, checkpoint_dir=checkpoint_dir, checkpoint_interval=hparams.syncnet_checkpoint_interval, nepochs=hparams.nepochs)