import os import streamlit as st import subprocess from gtts import gTTS import cv2 from huggingface_hub import InferenceClient import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using {} for inference.'.format(device)) client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def generate_output(prompt): if not prompt: return None, "El campo de la pregunta es obligatorio." response = client.text_generation(prompt, max_new_tokens=50, temperature=0.6) gpt3_output = response.strip() personalized_response = f"{gpt3_output}" try: tts = gTTS(personalized_response, lang='es') audio_path = "audio.mp3" tts.save(audio_path) except Exception as e: return None, f"No se pudo generar el audio: {str(e)}" video_path = "video.mp4" command = f"CUDA_VISIBLE_DEVICES='' python3 inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face face.jpg --audio {audio_path} --outfile {video_path} --nosmooth --resize_factor 4" process = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) if process.returncode != 0: error_message = process.stderr return None, f"No se pudo generar el video: {error_message}" if os.path.isfile(video_path): return video_path, None return None, "No se pudo generar el video" st.title("Lypsinc + Inteligencia Artificial") prompt = st.text_input("Pregunta") if st.button("Generar Video"): video_path, error_message = generate_output(prompt) if error_message: st.error(f"Error: {error_message}") else: with open(video_path, "rb") as video_file: st.video(video_file.read())