import os import gradio as gr import numpy as np import random from huggingface_hub import AsyncInferenceClient from translatepy import Translator import requests import re import asyncio from PIL import Image translator = Translator() HF_TOKEN = os.environ.get("HF_TOKEN", None) basemodel = "black-forest-labs/FLUX.1-dev" MAX_SEED = np.iinfo(np.int32).max CSS = """ footer { visibility: hidden; } """ JS = """function () { gradioURL = window.location.href if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }""" def enable_lora(lora_add): if not lora_add: return basemodel else: return lora_add async def generate_image( prompt:str, model:str, lora_word:str, width:int=768, height:int=1024, scales:float=3.5, steps:int=24, seed:int=-1): if seed == -1: seed = random.randint(0, MAX_SEED) seed = int(seed) print(f'prompt:{prompt}') text = str(translator.translate(prompt, 'English')) + "," + lora_word client = AsyncInferenceClient() try: image = await client.text_to_image( prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model, ) except Exception as e: raise gr.Error(f"Error in {e}") return image, seed async def upscale_image(image, upscale_factor): client = AsyncInferenceClient() try: result = await client.predict( input_image=image, prompt="", negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process", model="finegrain/finegrain-image-enhancer" ) except Exception as e: raise gr.Error(f"Error in {e}") return result[1] async def gen( prompt:str, lora_add:str="XLabs-AI/flux-RealismLora", lora_word:str="", width:int=768, height:int=1024, scales:float=3.5, steps:int=24, seed:int=-1, upscale_factor:int=2, progress=gr.Progress(track_tqdm=True) ): model = enable_lora(lora_add) image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed) image_path = "image.png" image.save(image_path) upscaled_image = await upscale_image(image_path, upscale_factor) return upscaled_image, seed with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: gr.HTML("

Flux Lab Light

") with gr.Row(): with gr.Column(scale=4): with gr.Row(): img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600) with gr.Row(): prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6) sendBtn = gr.Button(scale=1, variant='primary') with gr.Accordion("Opciones avanzadas", open=True): with gr.Column(scale=1): width = gr.Slider( label="Ancho", minimum=512, maximum=1280, step=8, value=768, ) height = gr.Slider( label="Alto", minimum=512, maximum=1280, step=8, value=1024, ) scales = gr.Slider( label="Guía", minimum=3.5, maximum=7, step=0.1, value=3.5, ) steps = gr.Slider( label="Pasos", minimum=1, maximum=100, step=1, value=24, ) seed = gr.Slider( label="Semillas", minimum=-1, maximum=MAX_SEED, step=1, value=-1, ) lora_add = gr.Textbox( label="Agregar Flux LoRA", info="Modelo de LoRA a agregar", lines=1, value="XLabs-AI/flux-RealismLora", ) lora_word = gr.Textbox( label="Palabra clave de LoRA", info="Palabra clave para activar el modelo de LoRA", lines=1, value="", ) upscale_factor = gr.Radio( label="Factor de escalado", choices=[2, 3, 4], value=2, ) gr.on( triggers=[ prompt.submit, sendBtn.click, ], fn=gen, inputs=[ prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor ], outputs=[img, seed] ) if __name__ == "__main__": demo.queue(api_open=False).launch(show_api=False, share=False)