import os import gradio as gr import numpy as np import random from huggingface_hub import AsyncInferenceClient from translatepy import Translator import requests import re import asyncio from PIL import Image from gradio_client import Client, handle_file from huggingface_hub import login from gradio_imageslider import ImageSlider translator = Translator() HF_TOKEN = os.environ.get("HF_TOKEN") HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER") MAX_SEED = np.iinfo(np.int32).max CSS = "footer { visibility: hidden; }" JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }" def enable_lora(lora_add, basemodel): return basemodel if not lora_add else lora_add async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): try: if seed == -1: seed = random.randint(0, MAX_SEED) seed = int(seed) text = str(translator.translate(prompt, 'English')) + "," + lora_word client = AsyncInferenceClient() image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model) return image, seed except Exception as e: raise gr.Error(f"Error en {e}") async def gen(prompt, basemodel, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale): model = enable_lora(lora_add, basemodel) image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed) image_path = "temp_image.png" image.save(image_path) if process_upscale: upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor) else: upscale_image = image_path return [image_path, upscale_image] def get_upscale_finegrain(prompt, img_path, upscale_factor): client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process") return result[1] css = """ #col-container{ margin: 0 auto; max-width: 1024px; } """ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: with gr.Column(elem_id="col-container"): gr.Markdown("Flux Upscaled +LORA") with gr.Row(): with gr.Column(scale=1.5): output_res = ImageSlider(label="Flux / Upscaled") with gr.Column(scale=0.8): with gr.Group(): prompt = gr.Textbox(label="Prompt") basemodel_choice = gr.Radio(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell") lora_add = gr.Textbox(label="Add Flux LoRA", info="Modelo Lora", lines=1, value="XLabs-AI/flux-RealismLora") lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="") width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=512) height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=512) scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24) seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1) upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 3, 4], value=2, scale=2) process_upscale = gr.Checkbox(label="Process Upscale", value=True) submit_btn = gr.Button("Submit", scale=1) submit_btn.click( fn=lambda: None, inputs=None, outputs=[output_res], queue=False ).then( fn=gen, inputs=[prompt, basemodel_choice, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale], outputs=[output_res] ) demo.launch()