import gradio as gr import torch from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler from huggingface_hub import hf_hub_download import spaces from PIL import Image # Constants base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "tianweiy/DMD2" checkpoints = { "1-Step" : ["dmd2_sdxl_1step_unet_fp16.bin", 1], "4-Step" : ["dmd2_sdxl_4step_unet_fp16.bin", 4], } loaded = None CSS = """ .gradio-container { max-width: 690px !important; } """ # Ensure model and scheduler are initialized in GPU-enabled function if torch.cuda.is_available(): unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16) pipe = DiffusionPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda") # Function @spaces.GPU() def generate_image(prompt, ckpt): global loaded print(prompt, ckpt) checkpoint = checkpoints[ckpt][0] num_inference_steps = checkpoints[ckpt][1] if loaded != num_inference_steps: pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon") pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoint), map_location="cuda")) loaded = num_inference_steps if num_inference_steps == 1: timesteps = [399] results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0, timesteps=timesteps) return results.images[0] # Gradio Interface with gr.Blocks(css=CSS) as demo: gr.HTML("