File size: 10,802 Bytes
4b2c8d9
be3048f
3d4d40d
 
 
 
4835f75
 
 
4b2c8d9
 
 
 
4835f75
4b2c8d9
 
 
 
 
 
 
 
4835f75
 
3d4d40d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4835f75
 
 
 
 
 
 
 
 
 
 
 
 
 
4b2c8d9
 
790f4eb
 
 
3d4d40d
 
 
 
 
790f4eb
 
3d4d40d
 
4b2c8d9
3d4d40d
 
 
 
 
 
 
 
 
790f4eb
 
3d4d40d
 
 
 
 
 
 
 
 
 
790f4eb
 
3d4d40d
 
 
 
 
 
 
 
 
 
790f4eb
 
3d4d40d
 
 
 
 
 
 
 
 
 
790f4eb
 
3d4d40d
4b2c8d9
3d4d40d
 
ac0b05c
 
be3048f
3d4d40d
 
 
 
 
 
 
 
4b2c8d9
3d4d40d
 
 
 
 
4b2c8d9
 
29c9647
 
ac0b05c
cf49f13
 
 
 
ac0b05c
 
 
 
 
 
 
 
 
4b2c8d9
 
 
 
 
cf49f13
 
4b2c8d9
 
3d4d40d
cf49f13
 
 
 
 
4b2c8d9
 
 
 
3d4d40d
4b2c8d9
cf49f13
3d4d40d
cf49f13
3d4d40d
cf49f13
3d4d40d
 
cf49f13
3d4d40d
4b2c8d9
 
 
be3048f
4b2c8d9
 
 
 
 
 
3d4d40d
 
4b2c8d9
ac0b05c
4b2c8d9
3d4d40d
 
 
 
 
 
 
 
 
 
 
4b2c8d9
 
3d4d40d
 
 
4b2c8d9
3d4d40d
4b2c8d9
cf49f13
4b2c8d9
 
3d4d40d
 
790f4eb
4b2c8d9
3d4d40d
 
cf49f13
3d4d40d
 
 
 
790f4eb
3d4d40d
 
 
 
 
 
 
cf49f13
ac0b05c
 
 
 
 
 
 
 
 
 
3d4d40d
 
 
 
 
 
4b2c8d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
import hand_schedule
import adaptive_schedule
import interleaved_variant
import type2
import schedule1f1bv
from PIL import Image
from svg_event import render_manual_graph
import pathlib

def percentage(x):
  return f"{x*100:.2f}%"

def get_schedule_time(result):
  result = [
    list(filter(lambda x: x.type in {'F', 'B', 'W'}, r)) for r in result
  ]
  time = max(
    [
      max([x.completion_time for x in stage]) - min([x.start_time for x in stage]) for stage in result
    ]
  )
  return time


def get_memory_usage(result):
  max_mem = 0
  has_w = False
  for r in result:
    for x in r:
      if x.type in ('W', 'w'):
        has_w = True
  for r in result:
    cur = 0
    for x in r:
      if x.type in ('F', 'f'):
        cur += 1
      if x.type in ('W', 'w'):
        cur -= 1
      if has_w == False and x.type in ('B', 'b'):
        cur -= 1
      max_mem = max(max_mem, cur)
  return max_mem

img_queue = []
def get_schedule_image(result, max_time):
  result = [
    list(filter(lambda x: x.type in {'F', 'B', 'W'}, r)) for r in result
  ]
  svg = render_manual_graph(result, max_time, len(result[0]) <= 72)
  img_queue.append(svg)
  if len(img_queue) > 32:
    poped = img_queue.pop(0)
    pathlib.Path(poped).unlink()

  return pathlib.Path(svg)

  

def calculate(p, m, f, b, w, c, mem):
  def get_bubble_rate(_time):
    return 1 - ((f + b + w) * m / _time)

  baseline_result = hand_schedule.get_hand_schedule(p, m, f, b + w, 0, c)
  baseline_result = [
      list(filter(lambda x: x.type in {'F', 'B'}, r)) for r in baseline_result
  ]
  baseline_time = get_schedule_time(baseline_result)
  # baseline_bubble=percentage(baseline_time/(f+b+w)/m - 1)
  baseline_bubble=percentage(get_bubble_rate(baseline_time))
  baseline_mem = get_memory_usage(baseline_result)
  baseline_acceleration=percentage(0)

  adapt_result = adaptive_schedule.schedule(
                p,
                m,
                [f/2, b/2, w/2, c],
                max_mem=mem * 2
  )

  adapt_time = get_schedule_time(adapt_result)
  adapt_mem = get_memory_usage(adapt_result) / 2
  # adapt_bubble=percentage(adapt_time/(f+b+w)/m - 1)
  adapt_bubble=percentage(get_bubble_rate(adapt_time))
  adapt_acceleration=percentage(baseline_time/adapt_time - 1) if baseline_time is not None else None

  schedule1f1bv_result = schedule1f1bv.schedule(
                p,
                m,
                [f / 2, b / 2, w / 2, c]
  )

  schedule1f1bv_time = get_schedule_time(schedule1f1bv_result)
  schedule1f1bv_mem = get_memory_usage(schedule1f1bv_result) / 2
  # schedule1f1bv_bubble=percentage(schedule1f1bv_time/(f+b+w)/m - 1)
  schedule1f1bv_bubble=percentage(get_bubble_rate(schedule1f1bv_time))
  schedule1f1bv_acceleration=percentage(baseline_time/schedule1f1bv_time - 1) if baseline_time is not None else None

  type2_result = type2.schedule(
                p,
                m,
                [f, b, w, c]
  )

  type2_time = get_schedule_time(type2_result)
  type2_mem = get_memory_usage(type2_result)
  # type2_bubble=percentage(type2_time/(f+b+w)/m - 1)
  type2_bubble=percentage(get_bubble_rate(type2_time))
  type2_acceleration=percentage(baseline_time/type2_time - 1) if baseline_time is not None else None

  interleaved_result = interleaved_variant.get_interleaved_variation(
                p,
                m,
                [f/2, b/2, w/2, c]
  )

  interleaved_time = get_schedule_time(interleaved_result)
  interleaved_mem = get_memory_usage(interleaved_result) / 2
  # interleaved_bubble=percentage(interleaved_time/(f+b+w)/m - 1)
  interleaved_bubble=percentage(get_bubble_rate(interleaved_time))
  interleaved_acceleration=percentage(baseline_time/interleaved_time - 1) if baseline_time is not None else None
  

  max_time = max(filter(lambda x: x is not None, [baseline_time, adapt_time, interleaved_time, type2_time, schedule1f1bv_time]))
  print(max_time)
  if baseline_result is not None:
    baseline_image = get_schedule_image(baseline_result, max_time)
  if adapt_result is not None:
    adapt_image = get_schedule_image(adapt_result, max_time)
  if interleaved_result is not None:
    interleaved_image = get_schedule_image(interleaved_result, max_time)
  if type2_result is not None:
    type2_image = get_schedule_image(type2_result, max_time)
  if schedule1f1bv_result is not None:
    schedule1f1bv_image = get_schedule_image(schedule1f1bv_result, max_time)

  return [baseline_acceleration, baseline_mem, baseline_bubble, baseline_image,
          adapt_acceleration, adapt_mem, adapt_bubble, adapt_image,
          schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image,
          type2_acceleration, type2_mem, type2_bubble, type2_image,
          interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image]

with gr.Blocks() as demo:
  gr.Markdown(open("description1.md").read())
  gr.Markdown("# Pipeline Scheduler Playground")
  presets = {
    'Default Case': (4, 10, 100, 110, 90, 5, 'V-Half (1/2)'),
    'Ideal Case': (4, 10, 20, 20, 20, 0, 'V-Min (1/3)'),
    'Real Case': (4, 10, 1049, 1122, 903, 79, 'V-Half (1/2)'),
    'Zero Bubble Case': (4, 10, 1049, 1122, 903, 79, 'V-ZB (1)')
  }
  preset_buttons = {}
  
  with gr.Group():
    gr.Markdown("Preset Setups")
    with gr.Row():  
      for (k, v) in presets.items():
        preset_buttons[k] = gr.Button(k, variant="secondary")
      
  with gr.Row():
    with gr.Column(scale=1):
      with gr.Group():
        gr.Markdown("Basic Parameters")
        with gr.Row():
          p=gr.Number(label="Number of stages (p)", value=4, interactive=True, precision=0)
          m=gr.Number(label="Number of microbatches (m)", value=10, interactive=True, precision=0)
    with gr.Column(scale=2):
      with gr.Group():
        gr.Markdown("Costs. All costs are used as integers. For chunked schedules, this is the time of two virtual stages on a stage combined.")
        with gr.Row():
          f=gr.Number(label="Time of F", value=100, interactive=True, precision=0)
          b=gr.Number(label="Time of B", value=110, interactive=True, precision=0)
          w=gr.Number(label="Time of W", value=90, interactive=True, precision=0)
          c=gr.Number(label="Time of one P2P communication", value=5, interactive=True, precision=0)
  with gr.Group():
    gr.Markdown("Activation memory limit.")
    def update_mem(p, s, mem):
      print("update")
      if s == "custom":
        return mem
      if s == "V-Min (1/3)":
        return (p + 4) // 3
      if s == "V-Half (1/2)":
        return (p + 2) // 2
      if s == "V-ZB (1)":
        return p
      assert False
    memsel=gr.Radio(choices=["V-Min (1/3)", "V-Half (1/2)", "V-ZB (1)", "custom"], value="V-Half (1/2)")
    mem=gr.Number(label="Custom memory limit in terms of pending F on a stage. For chunked schedules, this is relative to two virtual stages on a stage combined.", value=(p.value + 2) // 2, interactive=True, precision=0)
    memsel.change(update_mem, inputs=[p, memsel, mem], outputs=mem)
    p.change(update_mem, inputs=[p, memsel, mem], outputs=mem)
    
  button=gr.Button("Calculate", variant="primary")

  with gr.Group():
    gr.Markdown("1F1B")
    with gr.Row():
      with gr.Column(scale=1):
        baseline_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
        baseline_mem=gr.Textbox("", label="Maximum memory usage")
        baseline_bubble=gr.Textbox("", label="Bubble Rate")
      with gr.Column(scale=4):
        baseline_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
  with gr.Group():
    gr.Markdown("Adaptive Scheduler")
    with gr.Row():
      with gr.Column(scale=1):
        adapt_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
        adapt_mem=gr.Textbox("", label="Maximum memory usage")
        adapt_bubble=gr.Textbox("", label="Bubble Rate")
      with gr.Column(scale=4):
        adapt_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
  gr.Markdown(open("description2.md").read())
  with gr.Group():
    gr.Markdown("1F1B-V Schedule")
    with gr.Row():
      with gr.Column(scale=1):
        schedule1f1bv_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
        schedule1f1bv_mem=gr.Textbox("", label="Maximum memory usage")
        schedule1f1bv_bubble=gr.Textbox("", label="Bubble Rate")
      with gr.Column(scale=4):
        schedule1f1bv_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
  with gr.Group():
    gr.Markdown("Zero bubble schedule with 2/3 1F1B memory")
    with gr.Row():
      with gr.Column(scale=1):
        type2_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
        type2_mem=gr.Textbox("", label="Maximum memory usage")
        type2_bubble=gr.Textbox("", label="Bubble Rate")
      with gr.Column(scale=4):
        type2_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
  with gr.Group():
    gr.Markdown("Variation of Interleaved 1F1B Schedule")
    with gr.Row():
      with gr.Column(scale=1):
        interleaved_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
        interleaved_mem=gr.Textbox("", label="Maximum memory usage")
        interleaved_bubble=gr.Textbox("", label="Bubble Rate")
      with gr.Column(scale=4):
        interleaved_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
    button.click(calculate, inputs=[p, m, f, b, w, c, mem], outputs=[baseline_acceleration, baseline_mem, baseline_bubble, baseline_image,
          adapt_acceleration, adapt_mem, adapt_bubble, adapt_image,
          schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image,
          type2_acceleration, type2_mem, type2_bubble, type2_image,
          interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image])
  gr.Markdown(open("description3.md").read())

  for (k, v) in presets.items():
    def update_preset(pb, p, m, f, b, w, c, mem):
      print(pb)
      print(presets[pb])
      print(presets[pb][-1])
      return *presets[pb],*calculate(*presets[pb][:-1], update_mem(p, presets[pb][-1], -1))
    preset_buttons[k].click(
       update_preset,
       inputs=[preset_buttons[k], p, m, f, b, w, c, mem],
       outputs=[p, m, f, b, w, c, memsel,
          baseline_acceleration, baseline_mem, baseline_bubble, baseline_image,
          adapt_acceleration, adapt_mem, adapt_bubble, adapt_image,
          schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image,
          type2_acceleration, type2_mem, type2_bubble, type2_image,
          interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image])
demo.launch()