File size: 10,802 Bytes
4b2c8d9 be3048f 3d4d40d 4835f75 4b2c8d9 4835f75 4b2c8d9 4835f75 3d4d40d 4835f75 4b2c8d9 790f4eb 3d4d40d 790f4eb 3d4d40d 4b2c8d9 3d4d40d 790f4eb 3d4d40d 790f4eb 3d4d40d 790f4eb 3d4d40d 790f4eb 3d4d40d 4b2c8d9 3d4d40d ac0b05c be3048f 3d4d40d 4b2c8d9 3d4d40d 4b2c8d9 29c9647 ac0b05c cf49f13 ac0b05c 4b2c8d9 cf49f13 4b2c8d9 3d4d40d cf49f13 4b2c8d9 3d4d40d 4b2c8d9 cf49f13 3d4d40d cf49f13 3d4d40d cf49f13 3d4d40d cf49f13 3d4d40d 4b2c8d9 be3048f 4b2c8d9 3d4d40d 4b2c8d9 ac0b05c 4b2c8d9 3d4d40d 4b2c8d9 3d4d40d 4b2c8d9 3d4d40d 4b2c8d9 cf49f13 4b2c8d9 3d4d40d 790f4eb 4b2c8d9 3d4d40d cf49f13 3d4d40d 790f4eb 3d4d40d cf49f13 ac0b05c 3d4d40d 4b2c8d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import hand_schedule
import adaptive_schedule
import interleaved_variant
import type2
import schedule1f1bv
from PIL import Image
from svg_event import render_manual_graph
import pathlib
def percentage(x):
return f"{x*100:.2f}%"
def get_schedule_time(result):
result = [
list(filter(lambda x: x.type in {'F', 'B', 'W'}, r)) for r in result
]
time = max(
[
max([x.completion_time for x in stage]) - min([x.start_time for x in stage]) for stage in result
]
)
return time
def get_memory_usage(result):
max_mem = 0
has_w = False
for r in result:
for x in r:
if x.type in ('W', 'w'):
has_w = True
for r in result:
cur = 0
for x in r:
if x.type in ('F', 'f'):
cur += 1
if x.type in ('W', 'w'):
cur -= 1
if has_w == False and x.type in ('B', 'b'):
cur -= 1
max_mem = max(max_mem, cur)
return max_mem
img_queue = []
def get_schedule_image(result, max_time):
result = [
list(filter(lambda x: x.type in {'F', 'B', 'W'}, r)) for r in result
]
svg = render_manual_graph(result, max_time, len(result[0]) <= 72)
img_queue.append(svg)
if len(img_queue) > 32:
poped = img_queue.pop(0)
pathlib.Path(poped).unlink()
return pathlib.Path(svg)
def calculate(p, m, f, b, w, c, mem):
def get_bubble_rate(_time):
return 1 - ((f + b + w) * m / _time)
baseline_result = hand_schedule.get_hand_schedule(p, m, f, b + w, 0, c)
baseline_result = [
list(filter(lambda x: x.type in {'F', 'B'}, r)) for r in baseline_result
]
baseline_time = get_schedule_time(baseline_result)
# baseline_bubble=percentage(baseline_time/(f+b+w)/m - 1)
baseline_bubble=percentage(get_bubble_rate(baseline_time))
baseline_mem = get_memory_usage(baseline_result)
baseline_acceleration=percentage(0)
adapt_result = adaptive_schedule.schedule(
p,
m,
[f/2, b/2, w/2, c],
max_mem=mem * 2
)
adapt_time = get_schedule_time(adapt_result)
adapt_mem = get_memory_usage(adapt_result) / 2
# adapt_bubble=percentage(adapt_time/(f+b+w)/m - 1)
adapt_bubble=percentage(get_bubble_rate(adapt_time))
adapt_acceleration=percentage(baseline_time/adapt_time - 1) if baseline_time is not None else None
schedule1f1bv_result = schedule1f1bv.schedule(
p,
m,
[f / 2, b / 2, w / 2, c]
)
schedule1f1bv_time = get_schedule_time(schedule1f1bv_result)
schedule1f1bv_mem = get_memory_usage(schedule1f1bv_result) / 2
# schedule1f1bv_bubble=percentage(schedule1f1bv_time/(f+b+w)/m - 1)
schedule1f1bv_bubble=percentage(get_bubble_rate(schedule1f1bv_time))
schedule1f1bv_acceleration=percentage(baseline_time/schedule1f1bv_time - 1) if baseline_time is not None else None
type2_result = type2.schedule(
p,
m,
[f, b, w, c]
)
type2_time = get_schedule_time(type2_result)
type2_mem = get_memory_usage(type2_result)
# type2_bubble=percentage(type2_time/(f+b+w)/m - 1)
type2_bubble=percentage(get_bubble_rate(type2_time))
type2_acceleration=percentage(baseline_time/type2_time - 1) if baseline_time is not None else None
interleaved_result = interleaved_variant.get_interleaved_variation(
p,
m,
[f/2, b/2, w/2, c]
)
interleaved_time = get_schedule_time(interleaved_result)
interleaved_mem = get_memory_usage(interleaved_result) / 2
# interleaved_bubble=percentage(interleaved_time/(f+b+w)/m - 1)
interleaved_bubble=percentage(get_bubble_rate(interleaved_time))
interleaved_acceleration=percentage(baseline_time/interleaved_time - 1) if baseline_time is not None else None
max_time = max(filter(lambda x: x is not None, [baseline_time, adapt_time, interleaved_time, type2_time, schedule1f1bv_time]))
print(max_time)
if baseline_result is not None:
baseline_image = get_schedule_image(baseline_result, max_time)
if adapt_result is not None:
adapt_image = get_schedule_image(adapt_result, max_time)
if interleaved_result is not None:
interleaved_image = get_schedule_image(interleaved_result, max_time)
if type2_result is not None:
type2_image = get_schedule_image(type2_result, max_time)
if schedule1f1bv_result is not None:
schedule1f1bv_image = get_schedule_image(schedule1f1bv_result, max_time)
return [baseline_acceleration, baseline_mem, baseline_bubble, baseline_image,
adapt_acceleration, adapt_mem, adapt_bubble, adapt_image,
schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image,
type2_acceleration, type2_mem, type2_bubble, type2_image,
interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image]
with gr.Blocks() as demo:
gr.Markdown(open("description1.md").read())
gr.Markdown("# Pipeline Scheduler Playground")
presets = {
'Default Case': (4, 10, 100, 110, 90, 5, 'V-Half (1/2)'),
'Ideal Case': (4, 10, 20, 20, 20, 0, 'V-Min (1/3)'),
'Real Case': (4, 10, 1049, 1122, 903, 79, 'V-Half (1/2)'),
'Zero Bubble Case': (4, 10, 1049, 1122, 903, 79, 'V-ZB (1)')
}
preset_buttons = {}
with gr.Group():
gr.Markdown("Preset Setups")
with gr.Row():
for (k, v) in presets.items():
preset_buttons[k] = gr.Button(k, variant="secondary")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("Basic Parameters")
with gr.Row():
p=gr.Number(label="Number of stages (p)", value=4, interactive=True, precision=0)
m=gr.Number(label="Number of microbatches (m)", value=10, interactive=True, precision=0)
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("Costs. All costs are used as integers. For chunked schedules, this is the time of two virtual stages on a stage combined.")
with gr.Row():
f=gr.Number(label="Time of F", value=100, interactive=True, precision=0)
b=gr.Number(label="Time of B", value=110, interactive=True, precision=0)
w=gr.Number(label="Time of W", value=90, interactive=True, precision=0)
c=gr.Number(label="Time of one P2P communication", value=5, interactive=True, precision=0)
with gr.Group():
gr.Markdown("Activation memory limit.")
def update_mem(p, s, mem):
print("update")
if s == "custom":
return mem
if s == "V-Min (1/3)":
return (p + 4) // 3
if s == "V-Half (1/2)":
return (p + 2) // 2
if s == "V-ZB (1)":
return p
assert False
memsel=gr.Radio(choices=["V-Min (1/3)", "V-Half (1/2)", "V-ZB (1)", "custom"], value="V-Half (1/2)")
mem=gr.Number(label="Custom memory limit in terms of pending F on a stage. For chunked schedules, this is relative to two virtual stages on a stage combined.", value=(p.value + 2) // 2, interactive=True, precision=0)
memsel.change(update_mem, inputs=[p, memsel, mem], outputs=mem)
p.change(update_mem, inputs=[p, memsel, mem], outputs=mem)
button=gr.Button("Calculate", variant="primary")
with gr.Group():
gr.Markdown("1F1B")
with gr.Row():
with gr.Column(scale=1):
baseline_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
baseline_mem=gr.Textbox("", label="Maximum memory usage")
baseline_bubble=gr.Textbox("", label="Bubble Rate")
with gr.Column(scale=4):
baseline_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
with gr.Group():
gr.Markdown("Adaptive Scheduler")
with gr.Row():
with gr.Column(scale=1):
adapt_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
adapt_mem=gr.Textbox("", label="Maximum memory usage")
adapt_bubble=gr.Textbox("", label="Bubble Rate")
with gr.Column(scale=4):
adapt_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
gr.Markdown(open("description2.md").read())
with gr.Group():
gr.Markdown("1F1B-V Schedule")
with gr.Row():
with gr.Column(scale=1):
schedule1f1bv_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
schedule1f1bv_mem=gr.Textbox("", label="Maximum memory usage")
schedule1f1bv_bubble=gr.Textbox("", label="Bubble Rate")
with gr.Column(scale=4):
schedule1f1bv_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
with gr.Group():
gr.Markdown("Zero bubble schedule with 2/3 1F1B memory")
with gr.Row():
with gr.Column(scale=1):
type2_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
type2_mem=gr.Textbox("", label="Maximum memory usage")
type2_bubble=gr.Textbox("", label="Bubble Rate")
with gr.Column(scale=4):
type2_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
with gr.Group():
gr.Markdown("Variation of Interleaved 1F1B Schedule")
with gr.Row():
with gr.Column(scale=1):
interleaved_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
interleaved_mem=gr.Textbox("", label="Maximum memory usage")
interleaved_bubble=gr.Textbox("", label="Bubble Rate")
with gr.Column(scale=4):
interleaved_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False)
button.click(calculate, inputs=[p, m, f, b, w, c, mem], outputs=[baseline_acceleration, baseline_mem, baseline_bubble, baseline_image,
adapt_acceleration, adapt_mem, adapt_bubble, adapt_image,
schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image,
type2_acceleration, type2_mem, type2_bubble, type2_image,
interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image])
gr.Markdown(open("description3.md").read())
for (k, v) in presets.items():
def update_preset(pb, p, m, f, b, w, c, mem):
print(pb)
print(presets[pb])
print(presets[pb][-1])
return *presets[pb],*calculate(*presets[pb][:-1], update_mem(p, presets[pb][-1], -1))
preset_buttons[k].click(
update_preset,
inputs=[preset_buttons[k], p, m, f, b, w, c, mem],
outputs=[p, m, f, b, w, c, memsel,
baseline_acceleration, baseline_mem, baseline_bubble, baseline_image,
adapt_acceleration, adapt_mem, adapt_bubble, adapt_image,
schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image,
type2_acceleration, type2_mem, type2_bubble, type2_image,
interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image])
demo.launch()
|