from sentence_transformers import SentenceTransformer, util from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline import gradio as gr # Load the SentenceTransformer model model = SentenceTransformer('msmarco-distilbert-base-v4') # Load Hugging Face NER model and tokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") ner_model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") ner_pipeline = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") # Define function to extract entities from text using the Hugging Face NER pipeline def extract_entities(text): entities = {"skills": [], "experience": [], "education": []} ner_results = ner_pipeline(text) for entity in ner_results: label = entity['entity_group'] if "SKILL" in label: entities["skills"].append(entity['word']) elif "EXPERIENCE" in label or "JOB" in label: entities["experience"].append(entity['word']) elif "DEGREE" in label or "EDUCATION" in label: entities["education"].append(entity['word']) return entities def match_cv_to_job(cv_text, job_description): debug_info = "Debug Info:\n" # Extract entities from CV and job description cv_entities = extract_entities(cv_text) job_entities = extract_entities(job_description) # Calculate similarity score between entities match_score = 0 for key in cv_entities: if key in job_entities: match_score += len(set(cv_entities[key]) & set(job_entities[key])) / len(set(job_entities[key])) if job_entities[key] else 0 # Average score by number of categories ner_match_score = (match_score / 3) * 100 # Normalized score for NER entities debug_info += f"NER Match Score: {ner_match_score:.2f}%\n" # Calculate overall similarity score using embeddings cv_embedding = model.encode(cv_text, convert_to_tensor=True) job_embedding = model.encode(job_description, convert_to_tensor=True) similarity_score = util.pytorch_cos_sim(cv_embedding, job_embedding).item() # Combine scores with weights (embedding similarity + NER matching) combined_score = (similarity_score * 0.7) + (ner_match_score / 100) * 0.3 # Weighted combined score match_percentage = combined_score * 100 debug_info += f"Overall Match Percentage: {match_percentage:.2f}%\n" return {"Match Percentage": f"{match_percentage:.2f}%"}, debug_info # Gradio interface with gr.Blocks() as demo: gr.Markdown("# CV and Job Description Matcher with Embeddings and NER Matching") cv_text = gr.Textbox(label="CV Text", placeholder="Enter the CV text here", lines=10) job_description = gr.Textbox(label="Job Description", placeholder="Enter the entire job description text here", lines=10) match_button = gr.Button("Calculate Match Percentage") output = gr.JSON(label="Match Result") debug_output = gr.Textbox(label="Debug Info", lines=10) match_button.click(fn=match_cv_to_job, inputs=[cv_text, job_description], outputs=[output, debug_output]) demo.launch()