from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig import torch # Initialize the FastAPI app app = FastAPI() # Load model and tokenizer once at startup base_model_name = "akjindal53244/Llama-3.1-Storm-8B" peft_model_id = "LlamaFactoryAI/cv-job-description-matching" base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16) model = PeftModel.from_pretrained(base_model, peft_model_id, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(base_model_name) config = PeftConfig.from_pretrained(peft_model_id) # Define request model class AnalysisRequest(BaseModel): cv: str job_description: str @app.post("/analyze") async def analyze(request: AnalysisRequest): try: # Prepare input text with formatted message system_prompt = """ You are an advanced AI model designed to analyze the compatibility between a CV and a job description. You will receive a CV and a job description. Your task is to output a structured JSON format that includes the following: 1. matching_analysis: Analyze the CV against the job description to identify key strengths and gaps. 2. description: Summarize the relevance of the CV to the job description in a few concise sentences. 3. score: Provide a numerical compatibility score (0-100) based on qualifications, skills, and experience. 4. recommendation: Suggest actions for the candidate to improve their match or readiness for the role. Your output must be in JSON format as follows: { "matching_analysis": "Your detailed analysis here.", "description": "A brief summary here.", "score": 85, "recommendation": "Your suggestions here." } """ user_input = f" {request.cv} \n {request.job_description} " input_text = system_prompt + user_input # Tokenize and generate response inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"analysis": generated_text} except Exception as e: raise HTTPException(status_code=500, detail=str(e))