# from syba.syba import SybaClassifier # def SYBAscore(smiles_list): # """ # Compute the average SYBA score for a list of SMILES strings. # Parameters: # - smiles_list (list of str): A list of SMILES strings representing molecules. # Returns: # - float: The average SYBA score for the list of molecules. # """ # syba = SybaClassifier() # syba.fitDefaultScore() # scores = [] # for smiles in smiles_list: # try: # score = syba.predict(smi=smiles) # scores.append(score) # except Exception as e: # print(f"Error processing SMILES '{smiles}': {e}") # continue # if scores: # return sum(scores) / len(scores) # else: # return None # Or handle empty list or all failed predictions as needed # syba = SybaClassifier() # syba.fitDefaultScore() # smi = "O=C(C)Oc1ccccc1C(=O)O" # print(syba.predict(smi)) import sascorer