# import evaluate # from evaluate.utils import launch_gradio_widget # import gradio as gr # module = evaluate.load("saicharan2804/molgenevalmetric") # # launch_gradio_widget(module) # iface = gr.Interface( # fn = module, # inputs=[ # gr.File(label="Generated SMILES"), # gr.File(label="Training Data", value=None), # ], # outputs="text" # ) # iface.launch() # import pandas as pd # df = pd.read_csv('/home/saicharan/Downloads/chembl.csv') # df = df.rename(columns={'canonical_smiles': 'SMILES'}) # df = df[0:10000] # print(df[['SMILES']].to_csv('/home/saicharan/Downloads/chembl_10000.csv')) from scscore.scscore.standalone_model_numpy import SCScorer import pandas as pd model = SCScorer() model.restore() pubchem = pd.read_csv('/home/saicharan/Downloads/chembl_10000.csv') # smis = ['CCCOCCC', 'CCCNc1ccccc1'] smis = pubchem['SMILES'].tolist() smis = smis[0:1000] print('computing') average_score = model.get_avg_score(smis) # Print the average score print('Average score:', average_score)