KmerTokenizer / KmerTokenizer.py
saicharan2804
Added token IDs
4d8cc2b
def atomwise_tokenizer(smi, exclusive_tokens=None):
"""
Tokenize a SMILES molecule at atom-level.
"""
import re
pattern = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
regex = re.compile(pattern)
tokens = [token for token in regex.findall(smi)]
if exclusive_tokens:
tokens = [tok if tok in exclusive_tokens or not tok.startswith('[') else '[UNK]' for tok in tokens]
return tokens
def kmer_tokenizer(smiles, ngram=4, stride=1, remove_last=False, exclusive_tokens=None):
"""
Tokenize a SMILES molecule into k-mers and return both the tokens and their token IDs.
"""
units = atomwise_tokenizer(smiles, exclusive_tokens=exclusive_tokens) # Atom-wise tokens from the SMILES
if ngram == 1:
tokens = units
else:
tokens = [''.join(units[i:i+ngram]) for i in range(0, len(units), stride) if len(units[i:i+ngram]) == ngram]
if remove_last and tokens and len(tokens[-1]) < ngram:
tokens = tokens[:-1] # Remove the last token if its length is less than ngram
# Generating token IDs
token_to_id = {}
token_ids = []
for token in tokens:
if token not in token_to_id:
token_to_id[token] = len(token_to_id) # Assign a new ID based on the current size of the dictionary
token_ids.append(token_to_id[token])
return tokens, token_ids
# print(kmer_tokenizer('CC[N+](C)(C)Cc1ccccc1Br'))