Spaces:
Sleeping
Sleeping
def atomwise_tokenizer(smi, exclusive_tokens=None): | |
""" | |
Tokenize a SMILES molecule at atom-level. | |
""" | |
import re | |
pattern = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])" | |
regex = re.compile(pattern) | |
tokens = [token for token in regex.findall(smi)] | |
if exclusive_tokens: | |
tokens = [tok if tok in exclusive_tokens or not tok.startswith('[') else '[UNK]' for tok in tokens] | |
return tokens | |
def kmer_tokenizer(smiles, ngram=4, stride=1, remove_last=False, exclusive_tokens=None): | |
""" | |
Tokenize a SMILES molecule into k-mers and return both the tokens and their token IDs. | |
""" | |
units = atomwise_tokenizer(smiles, exclusive_tokens=exclusive_tokens) # Atom-wise tokens from the SMILES | |
if ngram == 1: | |
tokens = units | |
else: | |
tokens = [''.join(units[i:i+ngram]) for i in range(0, len(units), stride) if len(units[i:i+ngram]) == ngram] | |
if remove_last and tokens and len(tokens[-1]) < ngram: | |
tokens = tokens[:-1] # Remove the last token if its length is less than ngram | |
# Generating token IDs | |
token_to_id = {} | |
token_ids = [] | |
for token in tokens: | |
if token not in token_to_id: | |
token_to_id[token] = len(token_to_id) # Assign a new ID based on the current size of the dictionary | |
token_ids.append(token_to_id[token]) | |
return tokens, token_ids | |
# print(kmer_tokenizer('CC[N+](C)(C)Cc1ccccc1Br')) |