from typing import List import torch from torch.utils.data import Subset from sklearn.model_selection import train_test_split from utils.helper_functions import normalize_ratios def stratified_random_split(ds: torch.utils.data.Dataset, parts: List[float], targets: List[int]) -> List[torch.utils.data.Dataset]: """ Perform a stratified random split on the dataset. Args: ds: PyTorch dataset to split. parts: List of proportions that sum to 1. targets: List of labels corresponding to dataset samples. Returns: List of PyTorch datasets corresponding to the splits. """ total_length = len(ds) # Normalize ratios parts = normalize_ratios(parts) lengths = list(map(lambda p: int(p * total_length), parts)) left_over = total_length - sum(lengths) lengths[0] += left_over # Adjust first split to account for leftover indices = list(range(total_length)) train_indices, temp_indices, _, temp_targets = train_test_split( indices, targets, test_size=(1 - parts[0]), stratify=targets, random_state=42 ) val_size = parts[1] / (parts[1] + parts[2]) val_indices, test_indices, _, _ = train_test_split( temp_indices, temp_targets, test_size=(1 - val_size), stratify=temp_targets, random_state=42 ) return [Subset(ds, train_indices), Subset(ds, val_indices), Subset(ds, test_indices)]