emotion-detection / utils /random_split.py
saeedbenadeeb's picture
First commit
0874d87
from typing import List
import torch
from torch.utils.data import Subset
from sklearn.model_selection import train_test_split
from utils.helper_functions import normalize_ratios
def stratified_random_split(ds: torch.utils.data.Dataset, parts: List[float], targets: List[int]) -> List[torch.utils.data.Dataset]:
"""
Perform a stratified random split on the dataset.
Args:
ds: PyTorch dataset to split.
parts: List of proportions that sum to 1.
targets: List of labels corresponding to dataset samples.
Returns:
List of PyTorch datasets corresponding to the splits.
"""
total_length = len(ds)
# Normalize ratios
parts = normalize_ratios(parts)
lengths = list(map(lambda p: int(p * total_length), parts))
left_over = total_length - sum(lengths)
lengths[0] += left_over # Adjust first split to account for leftover
indices = list(range(total_length))
train_indices, temp_indices, _, temp_targets = train_test_split(
indices, targets, test_size=(1 - parts[0]), stratify=targets, random_state=42
)
val_size = parts[1] / (parts[1] + parts[2])
val_indices, test_indices, _, _ = train_test_split(
temp_indices, temp_targets, test_size=(1 - val_size), stratify=temp_targets, random_state=42
)
return [Subset(ds, train_indices), Subset(ds, val_indices), Subset(ds, test_indices)]