from __future__ import annotations import spaces import gradio as gr from threading import Thread from transformers import TextIteratorStreamer import hashlib import os from transformers import AutoModel, AutoProcessor import torch model = AutoModel.from_pretrained("visheratin/MC-LLaVA-3b", torch_dtype=torch.float16, trust_remote_code=True).to("cuda") processor = AutoProcessor.from_pretrained("visheratin/MC-LLaVA-3b", trust_remote_code=True) if torch.cuda.is_available(): DEVICE = "cuda" DTYPE = torch.float16 else: DEVICE = "cpu" DTYPE = torch.float32 def cached_vision_process(image, max_crops, num_tokens): image_hash = hashlib.sha256(image.tobytes()).hexdigest() cache_path = f"visual_cache/{image_hash}-{max_crops}-{num_tokens}.pt" if os.path.exists(cache_path): return torch.load(cache_path).to(DEVICE, dtype=DTYPE) else: processor_outputs = processor.image_processor([image], max_crops) pixel_values = processor_outputs["pixel_values"] pixel_values = [ value.to(model.device).to(model.dtype) for value in pixel_values ] coords = processor_outputs["coords"] coords = [value.to(model.device).to(model.dtype) for value in coords] image_outputs = model.vision_model(pixel_values, coords, num_tokens) image_features = model.multi_modal_projector(image_outputs) os.makedirs("visual_cache", exist_ok=True) torch.save(image_features, cache_path) return image_features.to(DEVICE, dtype=DTYPE) @spaces.GPU(duration=20) def answer_question(image, question, max_crops, num_tokens, sample, temperature, top_k): if question is None or question.strip() == "": yield "Please ask a question" return if image is None: yield "Please upload an image" return prompt = f"""<|im_start|>user {question}<|im_end|> <|im_start|>assistant """ streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=True) with torch.inference_mode(): inputs = processor(prompt, [image], model, max_crops=max_crops, num_tokens=num_tokens) generation_kwargs = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "image_features": inputs["image_features"], "streamer": streamer, "max_length": 1000, "use_cache": True, "eos_token_id": processor.tokenizer.eos_token_id, "pad_token_id": processor.tokenizer.eos_token_id, "temperature": temperature, "do_sample": sample, "top_k": top_k, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" output_started = False for new_text in streamer: if not output_started: if "<|im_start|>assistant" in new_text: output_started = True continue buffer += new_text if len(buffer) > 1: yield buffer with gr.Blocks() as demo: gr.HTML("

MC-LLaVA 3B

") gr.HTML( "

MC-LLaVA 3B is a model that can answer questions about small details in high-resolution images.

" ) gr.HTML( "

The magic of LLM happened when we can combine them with different data sources. We are able to search for object on images and get answer prepared by Large Language Model.

" ) with gr.Group(): with gr.Row(): prompt = gr.Textbox( label="Question", placeholder="e.g. What is this?", scale=4 ) submit = gr.Button( "Submit", scale=1, ) with gr.Row(): max_crops = gr.Slider(minimum=0, maximum=200, step=5, value=0, label="Max crops") num_tokens = gr.Slider(minimum=728, maximum=2184, step=10, value=728, label="Number of image tokens") with gr.Row(): img = gr.Image(type="pil", label="Upload or Drag an Image") output = gr.TextArea(label="Answer") with gr.Row(): sample = gr.Checkbox(label="Sample", value=False) temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0, label="Temperature") top_k = gr.Slider(minimum=0, maximum=50, step=1, value=0, label="Top-K") submit.click(answer_question, [img, prompt, max_crops, num_tokens, sample, temperature, top_k], output) prompt.submit(answer_question, [img, prompt, max_crops, num_tokens, sample, temperature, top_k], output) demo.queue().launch(debug=True)