Spaces:
Sleeping
Sleeping
rynmurdock
commited on
merge
Browse files- app.py +1 -12
- safety_checker_improved.py +5 -4
app.py
CHANGED
@@ -123,20 +123,11 @@ pipe.unet.fuse_qkv_projections()
|
|
123 |
pipe.to(device=DEVICE)
|
124 |
#pipe.unet = torch.compile(pipe.unet)
|
125 |
#pipe.vae = torch.compile(pipe.vae)
|
126 |
-
# TODO cannot compile on Spaces or we time out; don't run leave_imb stuff either
|
127 |
-
#im_embs = torch.zeros(1, 1, 1, 1280, device=DEVICE, dtype=dtype)
|
128 |
-
#output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
|
129 |
-
#leave_im_emb, _ = pipe.encode_image(
|
130 |
-
# output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
|
131 |
-
#)
|
132 |
-
#assert len(output.frames[0]) == 16
|
133 |
-
#leave_im_emb.detach().to('cpu')
|
134 |
|
135 |
@spaces.GPU(duration=10)
|
136 |
def generate_gpu(in_im_embs):
|
137 |
print('start gen')
|
138 |
in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0)
|
139 |
-
#im_embs = torch.cat((torch.zeros(1, 1280, device=DEVICE, dtype=dtype), in_im_embs), 0)
|
140 |
|
141 |
output = pipe(prompt='', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS)
|
142 |
print('image is made')
|
@@ -148,7 +139,6 @@ def generate_gpu(in_im_embs):
|
|
148 |
return output, im_emb
|
149 |
|
150 |
def generate(in_im_embs):
|
151 |
-
|
152 |
output, im_emb = generate_gpu(in_im_embs)
|
153 |
nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2])
|
154 |
|
@@ -358,8 +348,7 @@ def choose(img, choice, calibrate_prompts, user_id, request: gr.Request):
|
|
358 |
choice = 0
|
359 |
|
360 |
row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
|
361 |
-
|
362 |
-
|
363 |
if len(prevs_df.loc[row_mask, 'user:rating']) > 0:
|
364 |
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
|
365 |
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
|
|
|
123 |
pipe.to(device=DEVICE)
|
124 |
#pipe.unet = torch.compile(pipe.unet)
|
125 |
#pipe.vae = torch.compile(pipe.vae)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
@spaces.GPU(duration=10)
|
128 |
def generate_gpu(in_im_embs):
|
129 |
print('start gen')
|
130 |
in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0)
|
|
|
131 |
|
132 |
output = pipe(prompt='', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS)
|
133 |
print('image is made')
|
|
|
139 |
return output, im_emb
|
140 |
|
141 |
def generate(in_im_embs):
|
|
|
142 |
output, im_emb = generate_gpu(in_im_embs)
|
143 |
nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2])
|
144 |
|
|
|
348 |
choice = 0
|
349 |
|
350 |
row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
|
351 |
+
# if it's still in the dataframe, add the choice
|
|
|
352 |
if len(prevs_df.loc[row_mask, 'user:rating']) > 0:
|
353 |
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
|
354 |
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
|
safety_checker_improved.py
CHANGED
@@ -9,11 +9,12 @@ import sys
|
|
9 |
sys.path.append('/home/ryn_mote/Misc/generative_recommender/gradio_video/automl/efficientnetv2/')
|
10 |
import tensorflow as tf
|
11 |
from tensorflow.keras import mixed_precision
|
12 |
-
#physical_devices = tf.config.list_physical_devices('GPU')
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
model = tf.keras.models.load_model('nsfweffnetv2-b02-3epochs.h5',custom_objects={"KerasLayer":hub.KerasLayer})
|
19 |
# "The image classifier had been trained on 682550 images from the 5 classes "Drawing" (39026), "Hentai" (28134), "Neutral" (369507), "Porn" (207969) & "Sexy" (37914).
|
|
|
9 |
sys.path.append('/home/ryn_mote/Misc/generative_recommender/gradio_video/automl/efficientnetv2/')
|
10 |
import tensorflow as tf
|
11 |
from tensorflow.keras import mixed_precision
|
|
|
12 |
|
13 |
+
physical_devices = tf.config.list_physical_devices('GPU')
|
14 |
+
if len(physical_devices) > 0:
|
15 |
+
tf.config.experimental.set_memory_growth(
|
16 |
+
physical_devices[0], True
|
17 |
+
)
|
18 |
|
19 |
model = tf.keras.models.load_model('nsfweffnetv2-b02-3epochs.h5',custom_objects={"KerasLayer":hub.KerasLayer})
|
20 |
# "The image classifier had been trained on 682550 images from the 5 classes "Drawing" (39026), "Hentai" (28134), "Neutral" (369507), "Porn" (207969) & "Sexy" (37914).
|