# rvv-karma/Human-Action-Recognition ## Creating prediction pipeline from PIL import Image from transformers import pipeline pipe = pipeline("image-classification", "rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224") def classify_image(input): image = Image.fromarray(input.astype('uint8'), 'RGB') predictions = pipe(image) return {prediction["label"]: prediction["score"] for prediction in predictions} # RUNNING WEB UI import gradio as gr image = gr.Image() label = gr.Label(num_top_classes=5) description = "## Categories: \n" + ", ".join(pipe.model.config.label2id.keys()) examples = [["samples/cycling.jpg"], ["samples/dancing.webp"], ["samples/listening music.png"], ["samples/running.jpg"], ["samples/sleeping.webp"]] theme = gr.themes.Default(primary_hue="red", secondary_hue="pink") gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Human Action Recognition', description=description, examples=examples, theme=theme ).launch(height=1000, width=1600, debug=True, share=True)