import os import multiprocessing import subprocess import nltk import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from moviepy.editor import VideoFileClip import moviepy.editor as mpy from PIL import Image, ImageDraw, ImageFont from mutagen.mp3 import MP3 from gtts import gTTS from pydub import AudioSegment import textwrap import gradio as gr import matplotlib.pyplot as plt import gc from huggingface_hub import snapshot_download from typing import List import shutil import numpy as np import random from diffusers import DiffusionPipeline # Initialize FLUX pipeline outside of the function dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 nltk.download('punkt') # Ensure proper multiprocessing start method multiprocessing.set_start_method("spawn", force=True) # GPU Fallback Setup if os.environ.get("SPACES_ZERO_GPU") is not None: import spaces else: class spaces: @staticmethod def GPU(func=None, duration=None): def wrapper(fn): return fn return wrapper if func is None else wrapper(func) # Download necessary NLTK data def setup_nltk(): """Ensure required NLTK data is available.""" try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') setup_nltk() # Constants DESCRIPTION = ( "Video Story Generator with Audio\n" "PS: Generation of video by using Artificial Intelligence via FLUX, distilbart, and GTTS." ) TITLE = "Video Story Generator with Audio by using FLUX, distilbart, and GTTS." # Load Tokenizer and Model for Text Summarization def load_text_summarization_model(): """Load the tokenizer and model for text summarization.""" print("Loading text summarization model...") tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") model.to(device) return tokenizer, model, device tokenizer, model, device = load_text_summarization_model() # Log GPU Memory (optional, for debugging) def log_gpu_memory(): """Log GPU memory usage.""" if torch.cuda.is_available(): print(subprocess.check_output('nvidia-smi').decode('utf-8')) else: print("CUDA is not available. Cannot log GPU memory.") # Check GPU Availability def check_gpu_availability(): """Print GPU availability and device details.""" if torch.cuda.is_available(): print(f"CUDA devices: {torch.cuda.device_count()}") print(f"Current device: {torch.cuda.current_device()}") print(torch.cuda.get_device_properties(torch.cuda.current_device())) else: print("CUDA is not available. Running on CPU.") check_gpu_availability() @spaces.GPU() def generate_image_with_flux( text: str, seed: int = 42, width: int = 1024, height: int = 1024, num_inference_steps: int = 4, randomize_seed: bool = True ): """ Generates an image from text using FLUX. Args: text: The text prompt to generate the image from. seed: The random seed for image generation. -1 for random. width: Width of the generated image. height: Height of the generated image. num_inference_steps: Number of inference steps. randomize_seed: Whether to randomize the seed. Returns: A PIL Image object. """ print(f"DEBUG: Generating image with FLUX for text: '{text}'") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = flux_pipe( prompt=text, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] print("DEBUG: Image generated successfully.") return image # --------- End of MinDalle Functions --------- # Merge audio files def merge_audio_files(mp3_names: List[str]) -> str: """ Merges a list of MP3 files into a single MP3 file. Args: mp3_names: List of paths to MP3 files. Returns: Path to the merged MP3 file. """ combined = AudioSegment.empty() for f_name in mp3_names: audio = AudioSegment.from_mp3(f_name) combined += audio export_path = "result.mp3" combined.export(export_path, format="mp3") print(f"DEBUG: Audio files merged and saved to {export_path}") return export_path # Function to generate video from text def get_output_video(text, seed, randomize_seed, width, height, num_inference_steps): print("DEBUG: Starting get_output_video function...") # Summarize the input text print("DEBUG: Summarizing text...") inputs = tokenizer( text, max_length=1024, truncation=True, return_tensors="pt" ).to(device) summary_ids = model.generate(inputs["input_ids"]) summary = tokenizer.batch_decode( summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) plot = list(summary[0].split('.')) print(f"DEBUG: Summary generated: {plot}") image_system ="Generate a realistic picture about this: " # Generate images for each sentence in the plot generated_images = [] for i, senten in enumerate(plot[:-1]): print(f"DEBUG: Generating image {i+1} of {len(plot)-1}...") image_dir = f"image_{i}" os.makedirs(image_dir, exist_ok=True) image = generate_image_with_flux( text= image_system + senten, seed=seed, randomize_seed=randomize_seed, width=width, height=height, num_inference_steps=num_inference_steps ) generated_images.append(image) image_path = os.path.join(image_dir, "generated_image.png") image.save(image_path) print(f"DEBUG: Image generated and saved to {image_path}") #del min_dalle_model # No need to delete the model here # torch.cuda.empty_cache() # No need to empty cache here # gc.collect() # No need to collect garbage here # Create subtitles from the plot sentences = plot[:-1] print("DEBUG: Creating subtitles...") assert len(generated_images) == len(sentences), "Mismatch in number of images and sentences." sub_names = [nltk.tokenize.sent_tokenize(sentence) for sentence in sentences] # Add subtitles to images with dynamic adjustments def get_dynamic_wrap_width(font, text, image_width, padding): # Estimate the number of characters per line dynamically avg_char_width = sum(font.getbbox(c)[2] for c in text) / len(text) return max(1, (image_width - padding * 2) // avg_char_width) def draw_multiple_line_text(image, text, font, text_color, text_start_height, padding=10): draw = ImageDraw.Draw(image) image_width, _ = image.size y_text = text_start_height lines = textwrap.wrap(text, width=get_dynamic_wrap_width(font, text, image_width, padding)) for line in lines: line_width, line_height = font.getbbox(line)[2:] draw.text(((image_width - line_width) / 2, y_text), line, font=font, fill=text_color) y_text += line_height + padding def add_text_to_img(text1, image_input): print(f"DEBUG: Adding text to image: '{text1}'") # Scale font size dynamically base_font_size = 30 image_width, image_height = image_input.size scaled_font_size = max(10, int(base_font_size * (image_width / 800))) path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf" if not os.path.exists(path_font): path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" font = ImageFont.truetype(path_font, scaled_font_size) text_color = (255, 255, 0) padding = 10 # Estimate starting height dynamically line_height = font.getbbox("A")[3] + padding total_text_height = len(textwrap.wrap(text1, get_dynamic_wrap_width(font, text1, image_width, padding))) * line_height text_start_height = image_height - total_text_height - 20 draw_multiple_line_text(image_input, text1, font, text_color, text_start_height, padding) return image_input # Process images with subtitles generated_images_sub = [] for k, image in enumerate(generated_images): text_to_add = sub_names[k][0] result = add_text_to_img(text_to_add, image.copy()) generated_images_sub.append(result) result.save(f"image_{k}/generated_image_with_subtitles.png") # Generate audio for each subtitle mp3_names = [] mp3_lengths = [] for k, text_to_add in enumerate(sub_names): print(f"DEBUG: Generating audio for: '{text_to_add[0]}'") f_name = f'audio_{k}.mp3' mp3_names.append(f_name) myobj = gTTS(text=text_to_add[0], lang='en', slow=False) myobj.save(f_name) audio = MP3(f_name) mp3_lengths.append(audio.info.length) print(f"DEBUG: Audio duration: {audio.info.length} seconds") # Merge audio files export_path = merge_audio_files(mp3_names) # Create video clips from images clips = [] for k, img in enumerate(generated_images_sub): duration = mp3_lengths[k] print(f"DEBUG: Creating video clip {k+1} with duration: {duration} seconds") clip = mpy.ImageClip(f"image_{k}/generated_image_with_subtitles.png").set_duration(duration + 0.5) clips.append(clip) # Concatenate video clips print("DEBUG: Concatenating video clips...") concat_clip = mpy.concatenate_videoclips(clips, method="compose") concat_clip.write_videofile("result_no_audio.mp4", fps=24, logger=None) # Combine video and audio movie_name = 'result_no_audio.mp4' movie_final = 'result_final.mp4' def combine_audio(vidname, audname, outname, fps=24): print(f"DEBUG: Combining audio for video: '{vidname}'") my_clip = mpy.VideoFileClip(vidname) audio_background = mpy.AudioFileClip(audname) final_clip = my_clip.set_audio(audio_background) final_clip.write_videofile(outname, fps=fps, logger=None) combine_audio(movie_name, export_path, movie_final) # Clean up print("DEBUG: Cleaning up files...") for i in range(len(generated_images_sub)): shutil.rmtree(f"image_{i}") os.remove(f"audio_{i}.mp3") os.remove("result.mp3") os.remove("result_no_audio.mp4") print("DEBUG: Cleanup complete.") print("DEBUG: get_output_video function completed successfully.") return 'result_final.mp4' # Example text (can be changed by user in Gradio interface) text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.' # Create Gradio interface demo = gr.Blocks() with demo: gr.Markdown("# Video Generator from stories with Artificial Intelligence") gr.Markdown("A story can be input by user. The story is summarized using DistilBART model. Then, the images are generated by using FLUX, and the subtitles and audio are created using gTTS. These are combined to generate a video.") with gr.Row(): with gr.Column(): input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) with gr.Row(): button_gen_video = gr.Button("Generate Video") with gr.Column(): #output_interpolation = gr.Video(label="Generated Video") output_interpolation = gr.Video(value="test.mp4", label="Generated Video") # Set default video gr.Markdown("

Future Works

") gr.Markdown("This program is a text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use more advanced image generation models. For more info visit [ruslanmv.com](https://ruslanmv.com/) ") button_gen_video.click( fn=get_output_video, inputs=[input_start_text, seed, randomize_seed, width, height, num_inference_steps], outputs=output_interpolation ) # Launch the Gradio app demo.launch(debug=True, share=False)