ruslanmv commited on
Commit
a9926fd
·
1 Parent(s): 2e22936

First commit

Browse files
Files changed (3) hide show
  1. app.py +379 -0
  2. requirements.txt +590 -0
  3. test.mp4 +0 -0
app.py ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import multiprocessing
3
+ import subprocess
4
+ import nltk
5
+ import torch
6
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
+ from moviepy.editor import VideoFileClip
8
+ import moviepy.editor as mpy
9
+ from PIL import Image, ImageDraw, ImageFont
10
+ from mutagen.mp3 import MP3
11
+ from gtts import gTTS
12
+ from pydub import AudioSegment
13
+ import textwrap
14
+ import gradio as gr
15
+ import matplotlib.pyplot as plt
16
+ import gc
17
+ from huggingface_hub import snapshot_download
18
+ from typing import List
19
+ import shutil
20
+ import numpy as np
21
+ import random
22
+ from diffusers import DiffusionPipeline
23
+
24
+ # Initialize FLUX pipeline outside of the function
25
+ dtype = torch.bfloat16
26
+ device = "cuda" if torch.cuda.is_available() else "cpu"
27
+ flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
28
+
29
+ MAX_SEED = np.iinfo(np.int32).max
30
+ MAX_IMAGE_SIZE = 2048
31
+
32
+ nltk.download('punkt')
33
+ # Ensure proper multiprocessing start method
34
+ multiprocessing.set_start_method("spawn", force=True)
35
+
36
+ # GPU Fallback Setup
37
+ if os.environ.get("SPACES_ZERO_GPU") is not None:
38
+ import spaces
39
+ else:
40
+ class spaces:
41
+ @staticmethod
42
+ def GPU(func=None, duration=None):
43
+ def wrapper(fn):
44
+ return fn
45
+ return wrapper if func is None else wrapper(func)
46
+
47
+ # Download necessary NLTK data
48
+ def setup_nltk():
49
+ """Ensure required NLTK data is available."""
50
+ try:
51
+ nltk.data.find('tokenizers/punkt')
52
+ except LookupError:
53
+ nltk.download('punkt')
54
+
55
+ setup_nltk()
56
+
57
+ # Constants
58
+ DESCRIPTION = (
59
+ "Video Story Generator with Audio\n"
60
+ "PS: Generation of video by using Artificial Intelligence via FLUX, distilbart, and GTTS."
61
+ )
62
+ TITLE = "Video Story Generator with Audio by using FLUX, distilbart, and GTTS."
63
+
64
+ # Load Tokenizer and Model for Text Summarization
65
+ def load_text_summarization_model():
66
+ """Load the tokenizer and model for text summarization."""
67
+ print("Loading text summarization model...")
68
+ tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
69
+ model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
70
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
71
+ print(f"Using device: {device}")
72
+ model.to(device)
73
+ return tokenizer, model, device
74
+
75
+ tokenizer, model, device = load_text_summarization_model()
76
+
77
+ # Log GPU Memory (optional, for debugging)
78
+ def log_gpu_memory():
79
+ """Log GPU memory usage."""
80
+ if torch.cuda.is_available():
81
+ print(subprocess.check_output('nvidia-smi').decode('utf-8'))
82
+ else:
83
+ print("CUDA is not available. Cannot log GPU memory.")
84
+
85
+ # Check GPU Availability
86
+ def check_gpu_availability():
87
+ """Print GPU availability and device details."""
88
+ if torch.cuda.is_available():
89
+ print(f"CUDA devices: {torch.cuda.device_count()}")
90
+ print(f"Current device: {torch.cuda.current_device()}")
91
+ print(torch.cuda.get_device_properties(torch.cuda.current_device()))
92
+ else:
93
+ print("CUDA is not available. Running on CPU.")
94
+
95
+ check_gpu_availability()
96
+
97
+ @spaces.GPU()
98
+ def generate_image_with_flux(
99
+ text: str,
100
+ seed: int = 42,
101
+ width: int = 1024,
102
+ height: int = 1024,
103
+ num_inference_steps: int = 4,
104
+ randomize_seed: bool = True
105
+ ):
106
+ """
107
+ Generates an image from text using FLUX.
108
+
109
+ Args:
110
+ text: The text prompt to generate the image from.
111
+ seed: The random seed for image generation. -1 for random.
112
+ width: Width of the generated image.
113
+ height: Height of the generated image.
114
+ num_inference_steps: Number of inference steps.
115
+ randomize_seed: Whether to randomize the seed.
116
+
117
+ Returns:
118
+ A PIL Image object.
119
+ """
120
+ print(f"DEBUG: Generating image with FLUX for text: '{text}'")
121
+ if randomize_seed:
122
+ seed = random.randint(0, MAX_SEED)
123
+ generator = torch.Generator().manual_seed(seed)
124
+ image = flux_pipe(
125
+ prompt=text,
126
+ width=width,
127
+ height=height,
128
+ num_inference_steps=num_inference_steps,
129
+ generator=generator,
130
+ guidance_scale=0.0
131
+ ).images[0]
132
+
133
+ print("DEBUG: Image generated successfully.")
134
+ return image
135
+
136
+ # --------- End of MinDalle Functions ---------
137
+ # Merge audio files
138
+
139
+ def merge_audio_files(mp3_names: List[str]) -> str:
140
+ """
141
+ Merges a list of MP3 files into a single MP3 file.
142
+
143
+ Args:
144
+ mp3_names: List of paths to MP3 files.
145
+
146
+ Returns:
147
+ Path to the merged MP3 file.
148
+ """
149
+ combined = AudioSegment.empty()
150
+ for f_name in mp3_names:
151
+ audio = AudioSegment.from_mp3(f_name)
152
+ combined += audio
153
+ export_path = "result.mp3"
154
+ combined.export(export_path, format="mp3")
155
+ print(f"DEBUG: Audio files merged and saved to {export_path}")
156
+ return export_path
157
+
158
+
159
+
160
+ # Function to generate video from text
161
+ def get_output_video(text, seed, randomize_seed, width, height, num_inference_steps):
162
+ print("DEBUG: Starting get_output_video function...")
163
+
164
+ # Summarize the input text
165
+ print("DEBUG: Summarizing text...")
166
+ inputs = tokenizer(
167
+ text,
168
+ max_length=1024,
169
+ truncation=True,
170
+ return_tensors="pt"
171
+ ).to(device)
172
+ summary_ids = model.generate(inputs["input_ids"])
173
+ summary = tokenizer.batch_decode(
174
+ summary_ids,
175
+ skip_special_tokens=True,
176
+ clean_up_tokenization_spaces=False
177
+ )
178
+ plot = list(summary[0].split('.'))
179
+ print(f"DEBUG: Summary generated: {plot}")
180
+
181
+ image_system ="Generate a realistic picture about this: "
182
+
183
+ # Generate images for each sentence in the plot
184
+ generated_images = []
185
+ for i, senten in enumerate(plot[:-1]):
186
+ print(f"DEBUG: Generating image {i+1} of {len(plot)-1}...")
187
+ image_dir = f"image_{i}"
188
+ os.makedirs(image_dir, exist_ok=True)
189
+ image = generate_image_with_flux(
190
+ text= image_system + senten,
191
+ seed=seed,
192
+ randomize_seed=randomize_seed,
193
+ width=width,
194
+ height=height,
195
+ num_inference_steps=num_inference_steps
196
+ )
197
+ generated_images.append(image)
198
+ image_path = os.path.join(image_dir, "generated_image.png")
199
+ image.save(image_path)
200
+ print(f"DEBUG: Image generated and saved to {image_path}")
201
+
202
+ #del min_dalle_model # No need to delete the model here
203
+ # torch.cuda.empty_cache() # No need to empty cache here
204
+ # gc.collect() # No need to collect garbage here
205
+
206
+ # Create subtitles from the plot
207
+ sentences = plot[:-1]
208
+ print("DEBUG: Creating subtitles...")
209
+ assert len(generated_images) == len(sentences), "Mismatch in number of images and sentences."
210
+ sub_names = [nltk.tokenize.sent_tokenize(sentence) for sentence in sentences]
211
+
212
+ # Add subtitles to images with dynamic adjustments
213
+ def get_dynamic_wrap_width(font, text, image_width, padding):
214
+ # Estimate the number of characters per line dynamically
215
+ avg_char_width = sum(font.getbbox(c)[2] for c in text) / len(text)
216
+ return max(1, (image_width - padding * 2) // avg_char_width)
217
+
218
+ def draw_multiple_line_text(image, text, font, text_color, text_start_height, padding=10):
219
+ draw = ImageDraw.Draw(image)
220
+ image_width, _ = image.size
221
+ y_text = text_start_height
222
+ lines = textwrap.wrap(text, width=get_dynamic_wrap_width(font, text, image_width, padding))
223
+ for line in lines:
224
+ line_width, line_height = font.getbbox(line)[2:]
225
+ draw.text(((image_width - line_width) / 2, y_text), line, font=font, fill=text_color)
226
+ y_text += line_height + padding
227
+
228
+ def add_text_to_img(text1, image_input):
229
+ print(f"DEBUG: Adding text to image: '{text1}'")
230
+ # Scale font size dynamically
231
+ base_font_size = 30
232
+ image_width, image_height = image_input.size
233
+ scaled_font_size = max(10, int(base_font_size * (image_width / 800)))
234
+ path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
235
+ if not os.path.exists(path_font):
236
+ path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
237
+ font = ImageFont.truetype(path_font, scaled_font_size)
238
+
239
+ text_color = (255, 255, 0)
240
+ padding = 10
241
+
242
+ # Estimate starting height dynamically
243
+ line_height = font.getbbox("A")[3] + padding
244
+ total_text_height = len(textwrap.wrap(text1, get_dynamic_wrap_width(font, text1, image_width, padding))) * line_height
245
+ text_start_height = image_height - total_text_height - 20
246
+
247
+ draw_multiple_line_text(image_input, text1, font, text_color, text_start_height, padding)
248
+ return image_input
249
+
250
+
251
+ # Process images with subtitles
252
+ generated_images_sub = []
253
+ for k, image in enumerate(generated_images):
254
+ text_to_add = sub_names[k][0]
255
+ result = add_text_to_img(text_to_add, image.copy())
256
+ generated_images_sub.append(result)
257
+ result.save(f"image_{k}/generated_image_with_subtitles.png")
258
+
259
+
260
+
261
+ # Generate audio for each subtitle
262
+ mp3_names = []
263
+ mp3_lengths = []
264
+ for k, text_to_add in enumerate(sub_names):
265
+ print(f"DEBUG: Generating audio for: '{text_to_add[0]}'")
266
+ f_name = f'audio_{k}.mp3'
267
+ mp3_names.append(f_name)
268
+ myobj = gTTS(text=text_to_add[0], lang='en', slow=False)
269
+ myobj.save(f_name)
270
+ audio = MP3(f_name)
271
+ mp3_lengths.append(audio.info.length)
272
+ print(f"DEBUG: Audio duration: {audio.info.length} seconds")
273
+
274
+ # Merge audio files
275
+ export_path = merge_audio_files(mp3_names)
276
+
277
+ # Create video clips from images
278
+ clips = []
279
+ for k, img in enumerate(generated_images_sub):
280
+ duration = mp3_lengths[k]
281
+ print(f"DEBUG: Creating video clip {k+1} with duration: {duration} seconds")
282
+ clip = mpy.ImageClip(f"image_{k}/generated_image_with_subtitles.png").set_duration(duration + 0.5)
283
+ clips.append(clip)
284
+
285
+ # Concatenate video clips
286
+ print("DEBUG: Concatenating video clips...")
287
+ concat_clip = mpy.concatenate_videoclips(clips, method="compose")
288
+ concat_clip.write_videofile("result_no_audio.mp4", fps=24, logger=None)
289
+
290
+ # Combine video and audio
291
+ movie_name = 'result_no_audio.mp4'
292
+ movie_final = 'result_final.mp4'
293
+
294
+ def combine_audio(vidname, audname, outname, fps=24):
295
+ print(f"DEBUG: Combining audio for video: '{vidname}'")
296
+ my_clip = mpy.VideoFileClip(vidname)
297
+ audio_background = mpy.AudioFileClip(audname)
298
+ final_clip = my_clip.set_audio(audio_background)
299
+ final_clip.write_videofile(outname, fps=fps, logger=None)
300
+
301
+ combine_audio(movie_name, export_path, movie_final)
302
+
303
+ # Clean up
304
+ print("DEBUG: Cleaning up files...")
305
+ for i in range(len(generated_images_sub)):
306
+ shutil.rmtree(f"image_{i}")
307
+ os.remove(f"audio_{i}.mp3")
308
+ os.remove("result.mp3")
309
+ os.remove("result_no_audio.mp4")
310
+
311
+ print("DEBUG: Cleanup complete.")
312
+ print("DEBUG: get_output_video function completed successfully.")
313
+ return 'result_final.mp4'
314
+
315
+ # Example text (can be changed by user in Gradio interface)
316
+ text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'
317
+
318
+ # Create Gradio interface
319
+ demo = gr.Blocks()
320
+ with demo:
321
+ gr.Markdown("# Video Generator from stories with Artificial Intelligence")
322
+ gr.Markdown("A story can be input by user. The story is summarized using DistilBART model. Then, the images are generated by using FLUX, and the subtitles and audio are created using gTTS. These are combined to generate a video.")
323
+ with gr.Row():
324
+ with gr.Column():
325
+ input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!")
326
+ with gr.Accordion("Advanced Settings", open=False):
327
+ seed = gr.Slider(
328
+ label="Seed",
329
+ minimum=0,
330
+ maximum=MAX_SEED,
331
+ step=1,
332
+ value=42,
333
+ )
334
+
335
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
336
+
337
+ with gr.Row():
338
+
339
+ width = gr.Slider(
340
+ label="Width",
341
+ minimum=256,
342
+ maximum=MAX_IMAGE_SIZE,
343
+ step=32,
344
+ value=512,
345
+ )
346
+
347
+ height = gr.Slider(
348
+ label="Height",
349
+ minimum=256,
350
+ maximum=MAX_IMAGE_SIZE,
351
+ step=32,
352
+ value=512,
353
+ )
354
+
355
+ with gr.Row():
356
+
357
+
358
+ num_inference_steps = gr.Slider(
359
+ label="Number of inference steps",
360
+ minimum=1,
361
+ maximum=50,
362
+ step=1,
363
+ value=4,
364
+ )
365
+ with gr.Row():
366
+ button_gen_video = gr.Button("Generate Video")
367
+ with gr.Column():
368
+ #output_interpolation = gr.Video(label="Generated Video")
369
+ output_interpolation = gr.Video(value="test.mp4", label="Generated Video") # Set default video
370
+ gr.Markdown("<h3>Future Works </h3>")
371
+ gr.Markdown("This program is a text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use more advanced image generation models. For more info visit [ruslanmv.com](https://ruslanmv.com/) ")
372
+ button_gen_video.click(
373
+ fn=get_output_video,
374
+ inputs=[input_start_text, seed, randomize_seed, width, height, num_inference_steps],
375
+ outputs=output_interpolation
376
+ )
377
+
378
+ # Launch the Gradio app
379
+ demo.launch(debug=True, share=False)
requirements.txt ADDED
@@ -0,0 +1,590 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.4.0
2
+ accelerate==1.3.0
3
+ aiofiles==23.2.1
4
+ aiohappyeyeballs==2.4.4
5
+ aiohttp==3.11.11
6
+ aiosignal==1.3.2
7
+ alabaster==1.0.0
8
+ albucore==0.0.19
9
+ albumentations==1.4.20
10
+ ale-py==0.10.1
11
+ altair==5.5.0
12
+ annotated-types==0.7.0
13
+ anyio==3.7.1
14
+ argon2-cffi==23.1.0
15
+ argon2-cffi-bindings==21.2.0
16
+ array_record==0.6.0
17
+ arviz==0.20.0
18
+ astropy==6.1.7
19
+ astropy-iers-data==0.2025.1.27.0.32.44
20
+ astunparse==1.6.3
21
+ atpublic==4.1.0
22
+ attrs==25.1.0
23
+ audioread==3.0.1
24
+ autograd==1.7.0
25
+ babel==2.16.0
26
+ backcall==0.2.0
27
+ beautifulsoup4==4.12.3
28
+ bigframes==1.34.0
29
+ bigquery-magics==0.5.0
30
+ bleach==6.2.0
31
+ blinker==1.9.0
32
+ blis==0.7.11
33
+ blosc2==3.0.0
34
+ bokeh==3.6.2
35
+ Bottleneck==1.4.2
36
+ bqplot==0.12.44
37
+ branca==0.8.1
38
+ CacheControl==0.14.2
39
+ cachetools==5.5.1
40
+ catalogue==2.0.10
41
+ certifi==2024.12.14
42
+ cffi==1.17.1
43
+ chardet==5.2.0
44
+ charset-normalizer==3.4.1
45
+ chex==0.1.88
46
+ clarabel==0.9.0
47
+ click==8.1.8
48
+ cloudpathlib==0.20.0
49
+ cloudpickle==3.1.1
50
+ cmake==3.31.4
51
+ cmdstanpy==1.2.5
52
+ colorcet==3.1.0
53
+ colorlover==0.3.0
54
+ colour==0.1.5
55
+ community==1.0.0b1
56
+ confection==0.1.5
57
+ cons==0.4.6
58
+ contourpy==1.3.1
59
+ cramjam==2.9.1
60
+ cryptography==43.0.3
61
+ cuda-python==12.6.0
62
+ cudf-cu12 @ https://pypi.nvidia.com/cudf-cu12/cudf_cu12-24.12.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
63
+ cufflinks==0.17.3
64
+ cupy-cuda12x==13.3.0
65
+ cvxopt==1.3.2
66
+ cvxpy==1.6.0
67
+ cycler==0.12.1
68
+ cyipopt==1.5.0
69
+ cymem==2.0.11
70
+ Cython==3.0.11
71
+ dask==2024.10.0
72
+ datascience==0.17.6
73
+ db-dtypes==1.4.0
74
+ dbus-python==1.2.18
75
+ debugpy==1.8.0
76
+ decorator==4.4.2
77
+ defusedxml==0.7.1
78
+ Deprecated==1.2.18
79
+ diffusers @ git+https://github.com/huggingface/diffusers.git@9f28f1abbaf1de21454644ea5391389dabe9a14a
80
+ distro==1.9.0
81
+ dlib==19.24.2
82
+ dm-tree==0.1.8
83
+ docker-pycreds==0.4.0
84
+ docstring_parser==0.16
85
+ docutils==0.21.2
86
+ dopamine_rl==4.1.2
87
+ duckdb==1.1.3
88
+ earthengine-api==1.4.6
89
+ easydict==1.13
90
+ editdistance==0.8.1
91
+ eerepr==0.1.0
92
+ einops==0.8.0
93
+ emoji==2.14.1
94
+ en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl#sha256=86cc141f63942d4b2c5fcee06630fd6f904788d2f0ab005cce45aadb8fb73889
95
+ entrypoints==0.4
96
+ et_xmlfile==2.0.0
97
+ etils==1.11.0
98
+ etuples==0.3.9
99
+ eval_type_backport==0.2.2
100
+ Farama-Notifications==0.0.4
101
+ fastai==2.7.18
102
+ fastapi==0.115.8
103
+ fastcore==1.7.28
104
+ fastdownload==0.0.7
105
+ fastjsonschema==2.21.1
106
+ fastprogress==1.0.3
107
+ fastrlock==0.8.3
108
+ ffmpy==0.5.0
109
+ filelock==3.17.0
110
+ firebase-admin==6.6.0
111
+ Flask==3.1.0
112
+ flatbuffers==25.1.24
113
+ flax==0.10.2
114
+ folium==0.19.4
115
+ fonttools==4.55.7
116
+ frozendict==2.4.6
117
+ frozenlist==1.5.0
118
+ fsspec==2024.10.0
119
+ future==1.0.0
120
+ gast==0.6.0
121
+ gcsfs==2024.10.0
122
+ GDAL==3.6.4
123
+ gdown==5.2.0
124
+ geemap==0.35.1
125
+ gensim==4.3.3
126
+ geocoder==1.38.1
127
+ geographiclib==2.0
128
+ geopandas==1.0.1
129
+ geopy==2.4.1
130
+ gin-config==0.5.0
131
+ gitdb==4.0.12
132
+ GitPython==3.1.44
133
+ glob2==0.7
134
+ google==2.0.3
135
+ google-ai-generativelanguage==0.6.15
136
+ google-api-core==2.19.2
137
+ google-api-python-client==2.155.0
138
+ google-auth==2.27.0
139
+ google-auth-httplib2==0.2.0
140
+ google-auth-oauthlib==1.2.1
141
+ google-cloud-aiplatform==1.74.0
142
+ google-cloud-bigquery==3.25.0
143
+ google-cloud-bigquery-connection==1.17.0
144
+ google-cloud-bigquery-storage==2.27.0
145
+ google-cloud-bigtable==2.28.1
146
+ google-cloud-core==2.4.1
147
+ google-cloud-datastore==2.20.2
148
+ google-cloud-firestore==2.19.0
149
+ google-cloud-functions==1.19.0
150
+ google-cloud-iam==2.17.0
151
+ google-cloud-language==2.16.0
152
+ google-cloud-pubsub==2.25.0
153
+ google-cloud-resource-manager==1.14.0
154
+ google-cloud-spanner==3.51.0
155
+ google-cloud-storage==2.19.0
156
+ google-cloud-translate==3.19.0
157
+ google-colab @ file:///colabtools/dist/google_colab-1.0.0.tar.gz
158
+ google-crc32c==1.6.0
159
+ google-genai==0.3.0
160
+ google-generativeai==0.8.4
161
+ google-pasta==0.2.0
162
+ google-resumable-media==2.7.2
163
+ googleapis-common-protos==1.66.0
164
+ googledrivedownloader==0.4
165
+ gradio==5.14.0
166
+ gradio_client==1.7.0
167
+ graphviz==0.20.3
168
+ greenlet==3.1.1
169
+ grpc-google-iam-v1==0.14.0
170
+ grpc-interceptor==0.15.4
171
+ grpcio==1.70.0
172
+ grpcio-status==1.62.3
173
+ gspread==6.1.4
174
+ gspread-dataframe==4.0.0
175
+ gTTS==2.5.4
176
+ gym==0.25.2
177
+ gym-notices==0.0.8
178
+ gymnasium==1.0.0
179
+ h11==0.14.0
180
+ h5netcdf==1.5.0
181
+ h5py==3.12.1
182
+ highspy==1.9.0
183
+ holidays==0.65
184
+ holoviews==1.20.0
185
+ html5lib==1.1
186
+ httpcore==1.0.7
187
+ httpimport==1.4.0
188
+ httplib2==0.22.0
189
+ httpx==0.28.1
190
+ huggingface-hub==0.27.1
191
+ humanize==4.11.0
192
+ hyperopt==0.2.7
193
+ ibis-framework==9.2.0
194
+ idna==3.10
195
+ imageio==2.36.1
196
+ imageio-ffmpeg==0.6.0
197
+ imagesize==1.4.1
198
+ imbalanced-learn==0.13.0
199
+ imgaug==0.4.0
200
+ immutabledict==4.2.1
201
+ importlib_metadata==8.6.1
202
+ importlib_resources==6.5.2
203
+ imutils==0.5.4
204
+ inflect==7.5.0
205
+ iniconfig==2.0.0
206
+ intel-cmplr-lib-ur==2025.0.4
207
+ intel-openmp==2025.0.4
208
+ ipyevents==2.0.2
209
+ ipyfilechooser==0.6.0
210
+ ipykernel==5.5.6
211
+ ipyleaflet==0.19.2
212
+ ipyparallel==8.8.0
213
+ ipython==7.34.0
214
+ ipython-genutils==0.2.0
215
+ ipython-sql==0.5.0
216
+ ipytree==0.2.2
217
+ ipywidgets==7.7.1
218
+ itsdangerous==2.2.0
219
+ jax==0.4.33
220
+ jax-cuda12-pjrt==0.4.33
221
+ jax-cuda12-plugin==0.4.33
222
+ jaxlib==0.4.33
223
+ jeepney==0.7.1
224
+ jellyfish==1.1.0
225
+ jieba==0.42.1
226
+ Jinja2==3.1.5
227
+ jiter==0.8.2
228
+ joblib==1.4.2
229
+ jsonpatch==1.33
230
+ jsonpickle==4.0.1
231
+ jsonpointer==3.0.0
232
+ jsonschema==4.23.0
233
+ jsonschema-specifications==2024.10.1
234
+ jupyter-client==6.1.12
235
+ jupyter-console==6.1.0
236
+ jupyter-leaflet==0.19.2
237
+ jupyter-server==1.24.0
238
+ jupyter_core==5.7.2
239
+ jupyterlab_pygments==0.3.0
240
+ jupyterlab_widgets==3.0.13
241
+ kaggle==1.6.17
242
+ kagglehub==0.3.6
243
+ keras==3.8.0
244
+ keras-hub==0.18.1
245
+ keras-nlp==0.18.1
246
+ keyring==23.5.0
247
+ kiwisolver==1.4.8
248
+ langchain==0.3.16
249
+ langchain-core==0.3.32
250
+ langchain-text-splitters==0.3.5
251
+ langcodes==3.5.0
252
+ langsmith==0.3.2
253
+ language_data==1.3.0
254
+ launchpadlib==1.10.16
255
+ lazr.restfulclient==0.14.4
256
+ lazr.uri==1.0.6
257
+ lazy_loader==0.4
258
+ libclang==18.1.1
259
+ libcudf-cu12 @ https://pypi.nvidia.com/libcudf-cu12/libcudf_cu12-24.12.0-py3-none-manylinux_2_28_x86_64.whl
260
+ libkvikio-cu12==24.12.1
261
+ librosa==0.10.2.post1
262
+ lightgbm==4.5.0
263
+ linkify-it-py==2.0.3
264
+ llvmlite==0.43.0
265
+ locket==1.0.0
266
+ logical-unification==0.4.6
267
+ lxml==5.3.0
268
+ marisa-trie==1.2.1
269
+ Markdown==3.7
270
+ markdown-it-py==3.0.0
271
+ MarkupSafe==2.1.5
272
+ matplotlib==3.10.0
273
+ matplotlib-inline==0.1.7
274
+ matplotlib-venn==1.1.1
275
+ mdit-py-plugins==0.4.2
276
+ mdurl==0.1.2
277
+ min-dalle==0.4.11
278
+ miniKanren==1.0.3
279
+ missingno==0.5.2
280
+ mistune==3.1.1
281
+ mizani==0.13.1
282
+ mkl==2025.0.1
283
+ ml-dtypes==0.4.1
284
+ mlxtend==0.23.4
285
+ more-itertools==10.5.0
286
+ moviepy==1.0.3
287
+ mpmath==1.3.0
288
+ msgpack==1.1.0
289
+ multidict==6.1.0
290
+ multipledispatch==1.0.0
291
+ multitasking==0.0.11
292
+ murmurhash==1.0.12
293
+ music21==9.3.0
294
+ mutagen==1.47.0
295
+ namex==0.0.8
296
+ narwhals==1.24.1
297
+ natsort==8.4.0
298
+ nbclassic==1.2.0
299
+ nbclient==0.10.2
300
+ nbconvert==7.16.6
301
+ nbformat==5.10.4
302
+ ndindex==1.9.2
303
+ nest-asyncio==1.6.0
304
+ networkx==3.4.2
305
+ nibabel==5.3.2
306
+ nltk==3.9.1
307
+ notebook==6.5.5
308
+ notebook_shim==0.2.4
309
+ numba==0.60.0
310
+ numba-cuda==0.0.17.1
311
+ numexpr==2.10.2
312
+ numpy==1.26.4
313
+ nvidia-cublas-cu11==11.11.3.6
314
+ nvidia-cublas-cu12==12.4.5.8
315
+ nvidia-cuda-cupti-cu11==11.8.87
316
+ nvidia-cuda-cupti-cu12==12.4.127
317
+ nvidia-cuda-nvcc-cu12==12.5.82
318
+ nvidia-cuda-nvrtc-cu11==11.8.89
319
+ nvidia-cuda-nvrtc-cu12==12.4.127
320
+ nvidia-cuda-runtime-cu11==11.8.89
321
+ nvidia-cuda-runtime-cu12==12.4.127
322
+ nvidia-cudnn-cu11==9.1.0.70
323
+ nvidia-cudnn-cu12==9.1.0.70
324
+ nvidia-cufft-cu11==10.9.0.58
325
+ nvidia-cufft-cu12==11.2.1.3
326
+ nvidia-curand-cu11==10.3.0.86
327
+ nvidia-curand-cu12==10.3.5.147
328
+ nvidia-cusolver-cu11==11.4.1.48
329
+ nvidia-cusolver-cu12==11.6.1.9
330
+ nvidia-cusparse-cu11==11.7.5.86
331
+ nvidia-cusparse-cu12==12.3.1.170
332
+ nvidia-cusparselt-cu12==0.6.2
333
+ nvidia-nccl-cu11==2.21.5
334
+ nvidia-nccl-cu12==2.21.5
335
+ nvidia-nvcomp-cu12==4.1.0.6
336
+ nvidia-nvjitlink-cu12==12.4.127
337
+ nvidia-nvtx-cu11==11.8.86
338
+ nvidia-nvtx-cu12==12.4.127
339
+ nvtx==0.2.10
340
+ nx-cugraph-cu12 @ https://pypi.nvidia.com/nx-cugraph-cu12/nx_cugraph_cu12-24.12.0-py3-none-any.whl
341
+ oauth2client==4.1.3
342
+ oauthlib==3.2.2
343
+ openai==1.59.9
344
+ opencv-contrib-python==4.10.0.84
345
+ opencv-python==4.10.0.84
346
+ opencv-python-headless==4.11.0.86
347
+ openpyxl==3.1.5
348
+ opentelemetry-api==1.16.0
349
+ opentelemetry-sdk==1.16.0
350
+ opentelemetry-semantic-conventions==0.37b0
351
+ opt_einsum==3.4.0
352
+ optax==0.2.4
353
+ optree==0.14.0
354
+ orbax-checkpoint==0.6.4
355
+ orjson==3.10.15
356
+ osqp==0.6.7.post3
357
+ packaging==24.2
358
+ pandas==2.2.2
359
+ pandas-datareader==0.10.0
360
+ pandas-gbq==0.26.1
361
+ pandas-stubs==2.2.2.240909
362
+ pandocfilters==1.5.1
363
+ panel==1.6.0
364
+ param==2.2.0
365
+ parso==0.8.4
366
+ parsy==2.1
367
+ partd==1.4.2
368
+ pathlib==1.0.1
369
+ patsy==1.0.1
370
+ peewee==3.17.8
371
+ peft==0.14.0
372
+ pexpect==4.9.0
373
+ pickleshare==0.7.5
374
+ pillow==11.1.0
375
+ platformdirs==4.3.6
376
+ plotly==5.24.1
377
+ plotnine==0.14.5
378
+ pluggy==1.5.0
379
+ ply==3.11
380
+ polars==1.9.0
381
+ pooch==1.8.2
382
+ portpicker==1.5.2
383
+ preshed==3.0.9
384
+ prettytable==3.13.0
385
+ proglog==0.1.10
386
+ progressbar2==4.5.0
387
+ prometheus_client==0.21.1
388
+ promise==2.3
389
+ prompt_toolkit==3.0.50
390
+ propcache==0.2.1
391
+ prophet==1.1.6
392
+ proto-plus==1.26.0
393
+ protobuf==4.25.6
394
+ psutil==5.9.5
395
+ psycopg2==2.9.10
396
+ ptyprocess==0.7.0
397
+ py-cpuinfo==9.0.0
398
+ py4j==0.10.9.7
399
+ pyarrow==17.0.0
400
+ pyasn1==0.6.1
401
+ pyasn1_modules==0.4.1
402
+ pycocotools==2.0.8
403
+ pycparser==2.22
404
+ pydantic==2.10.6
405
+ pydantic_core==2.27.2
406
+ pydata-google-auth==1.9.1
407
+ pydot==3.0.4
408
+ pydotplus==2.0.2
409
+ PyDrive==1.3.1
410
+ PyDrive2==1.21.3
411
+ pydub==0.25.1
412
+ pyerfa==2.0.1.5
413
+ pygame==2.6.1
414
+ pygit2==1.16.0
415
+ Pygments==2.18.0
416
+ PyGObject==3.42.1
417
+ PyJWT==2.10.1
418
+ pylibcudf-cu12 @ https://pypi.nvidia.com/pylibcudf-cu12/pylibcudf_cu12-24.12.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
419
+ pylibcugraph-cu12==24.12.0
420
+ pylibraft-cu12==24.12.0
421
+ pymc==5.19.1
422
+ pymystem3==0.2.0
423
+ pynvjitlink-cu12==0.5.0
424
+ pyogrio==0.10.0
425
+ Pyomo==6.8.2
426
+ PyOpenGL==3.1.9
427
+ pyOpenSSL==24.2.1
428
+ pyparsing==3.2.1
429
+ pyperclip==1.9.0
430
+ pyproj==3.7.0
431
+ pyshp==2.3.1
432
+ PySocks==1.7.1
433
+ pyspark==3.5.4
434
+ pytensor==2.26.4
435
+ pytest==8.3.4
436
+ python-apt==0.0.0
437
+ python-box==7.3.2
438
+ python-dateutil==2.8.2
439
+ python-louvain==0.16
440
+ python-multipart==0.0.20
441
+ python-slugify==8.0.4
442
+ python-snappy==0.7.3
443
+ python-utils==3.9.1
444
+ pytz==2024.2
445
+ pyviz_comms==3.0.4
446
+ PyYAML==6.0.2
447
+ pyzmq==24.0.1
448
+ qdldl==0.1.7.post5
449
+ ratelim==0.1.6
450
+ referencing==0.36.2
451
+ regex==2024.11.6
452
+ requests==2.32.3
453
+ requests-oauthlib==1.3.1
454
+ requests-toolbelt==1.0.0
455
+ requirements-parser==0.9.0
456
+ rich==13.9.4
457
+ rmm-cu12==24.12.1
458
+ rpds-py==0.22.3
459
+ rpy2==3.4.2
460
+ rsa==4.9
461
+ ruff==0.9.4
462
+ safehttpx==0.1.6
463
+ safetensors==0.5.2
464
+ scikit-image==0.25.1
465
+ scikit-learn==1.6.1
466
+ scipy==1.13.1
467
+ scooby==0.10.0
468
+ scs==3.2.7.post2
469
+ seaborn==0.13.2
470
+ SecretStorage==3.3.1
471
+ semantic-version==2.10.0
472
+ Send2Trash==1.8.3
473
+ sentence-transformers==3.3.1
474
+ sentencepiece==0.2.0
475
+ sentry-sdk==2.20.0
476
+ setproctitle==1.3.4
477
+ shap==0.46.0
478
+ shapely==2.0.6
479
+ shellingham==1.5.4
480
+ simple-parsing==0.1.7
481
+ six==1.17.0
482
+ sklearn-compat==0.1.3
483
+ sklearn-pandas==2.2.0
484
+ slicer==0.0.8
485
+ smart-open==7.1.0
486
+ smmap==5.0.2
487
+ sniffio==1.3.1
488
+ snowballstemmer==2.2.0
489
+ soundfile==0.13.1
490
+ soupsieve==2.6
491
+ soxr==0.5.0.post1
492
+ spaces==0.32.0
493
+ spacy==3.7.5
494
+ spacy-legacy==3.0.12
495
+ spacy-loggers==1.0.5
496
+ spanner-graph-notebook==1.0.9
497
+ Sphinx==8.1.3
498
+ sphinxcontrib-applehelp==2.0.0
499
+ sphinxcontrib-devhelp==2.0.0
500
+ sphinxcontrib-htmlhelp==2.1.0
501
+ sphinxcontrib-jsmath==1.0.1
502
+ sphinxcontrib-qthelp==2.0.0
503
+ sphinxcontrib-serializinghtml==2.0.0
504
+ SQLAlchemy==2.0.37
505
+ sqlglot==25.6.1
506
+ sqlparse==0.5.3
507
+ srsly==2.5.1
508
+ stanio==0.5.1
509
+ starlette==0.45.3
510
+ statsmodels==0.14.4
511
+ stringzilla==3.11.3
512
+ sympy==1.13.1
513
+ tables==3.10.2
514
+ tabulate==0.9.0
515
+ tbb==2022.0.0
516
+ tcmlib==1.2.0
517
+ tenacity==9.0.0
518
+ tensorboard==2.18.0
519
+ tensorboard-data-server==0.7.2
520
+ tensorflow==2.18.0
521
+ tensorflow-datasets==4.9.7
522
+ tensorflow-hub==0.16.1
523
+ tensorflow-io-gcs-filesystem==0.37.1
524
+ tensorflow-metadata==1.16.1
525
+ tensorflow-probability==0.24.0
526
+ tensorflow-text==2.18.1
527
+ tensorstore==0.1.71
528
+ termcolor==2.5.0
529
+ terminado==0.18.1
530
+ text-unidecode==1.3
531
+ textblob==0.17.1
532
+ tf-slim==1.1.0
533
+ tf_keras==2.18.0
534
+ thinc==8.2.5
535
+ threadpoolctl==3.5.0
536
+ tifffile==2025.1.10
537
+ timm==1.0.14
538
+ tinycss2==1.4.0
539
+ tokenizers==0.21.0
540
+ toml==0.10.2
541
+ tomlkit==0.13.2
542
+ toolz==0.12.1
543
+ torch==2.6.0+cu118
544
+ torchaudio==2.6.0+cu118
545
+ torchsummary==1.5.1
546
+ torchvision==0.21.0+cu118
547
+ tornado==6.4.2
548
+ tqdm==4.67.1
549
+ traitlets==5.7.1
550
+ traittypes==0.2.1
551
+ transformers==4.48.2
552
+ triton==3.2.0
553
+ tweepy==4.14.0
554
+ typeguard==4.4.1
555
+ typer==0.15.1
556
+ types-pytz==2024.2.0.20241221
557
+ types-setuptools==75.8.0.20250110
558
+ typing_extensions==4.12.2
559
+ tzdata==2025.1
560
+ tzlocal==5.2
561
+ uc-micro-py==1.0.3
562
+ umf==0.9.1
563
+ uritemplate==4.1.1
564
+ urllib3==2.3.0
565
+ uvicorn==0.34.0
566
+ vega-datasets==0.9.0
567
+ wadllib==1.3.6
568
+ wandb==0.19.5
569
+ wasabi==1.1.3
570
+ wcwidth==0.2.13
571
+ weasel==0.4.1
572
+ webcolors==24.11.1
573
+ webencodings==0.5.1
574
+ websocket-client==1.8.0
575
+ websockets==14.2
576
+ Werkzeug==3.1.3
577
+ widgetsnbextension==3.6.10
578
+ wordcloud==1.9.4
579
+ wrapt==1.17.2
580
+ xarray==2025.1.1
581
+ xarray-einstats==0.8.0
582
+ xformers==0.0.29.post2
583
+ xgboost==2.1.3
584
+ xlrd==2.0.1
585
+ xyzservices==2025.1.0
586
+ yarl==1.18.3
587
+ yellowbrick==1.5
588
+ yfinance==0.2.52
589
+ zipp==3.21.0
590
+ zstandard==0.23.0
test.mp4 ADDED
Binary file (611 kB). View file