import os import json from dotenv import load_dotenv import fitz # PyMuPDF from langchain_openai import ChatOpenAI # Correct import from langchain-openai from langchain.schema import HumanMessage, SystemMessage # For creating structured chat messages QUESTIONS_PATH = "questions.json" # Load environment variables load_dotenv() def split_text_into_chunks(text: str, chunk_size: int) -> list: """ Splits the text into chunks of a specified maximum size. """ # Trim the text to remove leading/trailing whitespace and reduce multiple spaces to a single space cleaned_text = " ".join(text.split()) words = cleaned_text.split(" ") chunks = [] current_chunk = [] current_length = 0 for word in words: if current_length + len(word) + 1 > chunk_size: chunks.append(" ".join(current_chunk)) current_chunk = [word] current_length = len(word) else: current_chunk.append(word) current_length += len(word) + 1 if current_chunk: chunks.append(" ".join(current_chunk)) return chunks def distribute_questions_across_chunks(n_chunks: int, n_questions: int) -> list: """ Distributes a specified number of questions across a specified number of chunks. """ questions_per_chunk = [1] * min(n_chunks, n_questions) remaining_questions = n_questions - len(questions_per_chunk) if remaining_questions > 0: for i in range(len(questions_per_chunk)): if remaining_questions == 0: break questions_per_chunk[i] += 1 remaining_questions -= 1 while len(questions_per_chunk) < n_chunks: questions_per_chunk.append(0) return questions_per_chunk def extract_text_from_pdf(pdf_path): text = "" try: print(f"[DEBUG] Opening PDF: {pdf_path}") with fitz.open(pdf_path) as pdf: print(f"[DEBUG] Extracting text from PDF: {pdf_path}") for page in pdf: text += page.get_text() except Exception as e: print(f"Error reading PDF: {e}") raise RuntimeError("Unable to extract text from PDF.") return text def generate_questions_from_text(text, n_questions=5): openai_api_key = os.getenv("OPENAI_API_KEY") if not openai_api_key: raise RuntimeError( "OpenAI API key not found. Please add it to your .env file as OPENAI_API_KEY." ) chat = ChatOpenAI( openai_api_key=openai_api_key, model="gpt-4", temperature=0.7, max_tokens=750 ) messages = [ SystemMessage( content="You are an expert interviewer who generates concise technical interview questions. Do not enumerate the questions. Answer only with questions." ), HumanMessage( content=f"Based on the following content, generate {n_questions} technical interview questions:\n{text}" ), ] try: print(f"[DEBUG] Sending request to OpenAI with {n_questions} questions.") response = chat.invoke(messages) questions = response.content.strip().split("\n\n") questions = [q.strip() for q in questions if q.strip()] except Exception as e: print(f"[ERROR] Failed to generate questions: {e}") questions = ["An error occurred while generating questions."] return questions def save_questions(questions): with open(QUESTIONS_PATH, "w") as f: json.dump(questions, f, indent=4) def generate_and_save_questions_from_pdf(pdf_path, total_questions=5): print(f"[INFO] Generating questions from PDF: {pdf_path}") pdf_text = extract_text_from_pdf(pdf_path) if not pdf_text.strip(): raise RuntimeError("The PDF content is empty or could not be read.") chunk_size = 2000 chunks = split_text_into_chunks(pdf_text, chunk_size) n_chunks = len(chunks) questions_distribution = distribute_questions_across_chunks(n_chunks, total_questions) combined_questions = [] for i, (chunk, n_questions) in enumerate(zip(chunks, questions_distribution)): print(f"[DEBUG] Processing chunk {i + 1} of {n_chunks}") if n_questions > 0: questions = generate_questions_from_text(chunk, n_questions=n_questions) combined_questions.extend(questions) print(f"[INFO] Total questions generated: {len(combined_questions)}") save_questions(combined_questions) print(f"[INFO] Questions saved to {QUESTIONS_PATH}") return combined_questions if __name__ == "__main__": pdf_path = "professional_machine_learning_engineer_exam_guide_english.pdf" try: generated_questions = generate_and_save_questions_from_pdf( pdf_path, total_questions=5 ) print(f"Generated Questions:\n{json.dumps(generated_questions, indent=2)}") except Exception as e: print(f"Failed to generate questions: {e}")