Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,463 +1,412 @@
|
|
1 |
-
|
2 |
-
import tempfile
|
3 |
import os
|
4 |
import json
|
5 |
-
|
6 |
-
import
|
7 |
from collections import deque
|
|
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
from langchain_openai import ChatOpenAI
|
10 |
-
from langchain.schema import HumanMessage, SystemMessage
|
11 |
-
|
12 |
-
#
|
13 |
-
from generatorgr import (
|
14 |
-
generate_and_save_questions as generate_questions_manager,
|
15 |
-
update_max_questions,
|
16 |
-
)
|
17 |
-
from generator import (
|
18 |
-
PROFESSIONS_FILE,
|
19 |
-
TYPES_FILE,
|
20 |
-
OUTPUT_FILE,
|
21 |
-
load_json_data,
|
22 |
-
generate_questions,
|
23 |
-
)
|
24 |
-
from splitgpt import (
|
25 |
-
generate_and_save_questions_from_pdf3
|
26 |
-
)
|
27 |
-
|
28 |
-
# Placeholder imports for the manager application
|
29 |
-
# Ensure these modules and functions are correctly implemented in their respective files
|
30 |
-
from ai_config import convert_text_to_speech, load_model # Placeholder, needs implementation
|
31 |
-
from knowledge_retrieval import (
|
32 |
-
setup_knowledge_retrieval,
|
33 |
-
get_next_response,
|
34 |
-
generate_report,
|
35 |
-
get_initial_question,
|
36 |
-
) # Placeholder, needs implementation
|
37 |
-
from prompt_instructions import (
|
38 |
-
get_interview_initial_message_hr,
|
39 |
-
get_default_hr_questions,
|
40 |
-
) # Placeholder, needs implementation
|
41 |
-
from settings import language # Placeholder, needs implementation
|
42 |
-
from utils import save_interview_history # Placeholder, needs implementation
|
43 |
-
|
44 |
-
|
45 |
-
class InterviewState:
|
46 |
-
def __init__(self):
|
47 |
-
self.reset()
|
48 |
-
|
49 |
-
def reset(self, voice="alloy"):
|
50 |
-
self.question_count = 0
|
51 |
-
self.interview_history = []
|
52 |
-
self.selected_interviewer = voice
|
53 |
-
self.interview_finished = False
|
54 |
-
self.audio_enabled = True
|
55 |
-
self.temp_audio_files = []
|
56 |
-
self.initial_audio_path = None
|
57 |
-
self.admin_authenticated = False
|
58 |
-
self.document_loaded = False
|
59 |
-
self.knowledge_retrieval_setup = False
|
60 |
-
self.interview_chain = None
|
61 |
-
self.report_chain = None
|
62 |
-
self.current_questions = [] # Store the current set of questions
|
63 |
-
|
64 |
-
def get_voice_setting(self):
|
65 |
-
return self.selected_interviewer
|
66 |
-
|
67 |
-
|
68 |
-
interview_state = InterviewState()
|
69 |
-
|
70 |
-
|
71 |
-
def reset_interview_action(voice):
|
72 |
-
interview_state.reset(voice)
|
73 |
-
n_of_questions = 5 # Default questions
|
74 |
-
print(f"[DEBUG] Interview reset. Voice: {voice}")
|
75 |
-
|
76 |
-
initial_message = {
|
77 |
-
"role": "assistant",
|
78 |
-
"content": get_interview_initial_message_hr(n_of_questions),
|
79 |
-
}
|
80 |
-
print(f"[DEBUG] Interview reset. Voice: {voice}")
|
81 |
-
# Convert the initial message to speech
|
82 |
-
initial_audio_buffer = BytesIO()
|
83 |
-
convert_text_to_speech(initial_message["content"], initial_audio_buffer, voice)
|
84 |
-
initial_audio_buffer.seek(0)
|
85 |
-
|
86 |
-
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
87 |
-
temp_audio_path = temp_file.name
|
88 |
-
temp_file.write(initial_audio_buffer.getvalue())
|
89 |
-
|
90 |
-
interview_state.temp_audio_files.append(temp_audio_path)
|
91 |
-
print(f"[DEBUG] Audio file saved at {temp_audio_path}")
|
92 |
-
|
93 |
-
return (
|
94 |
-
[initial_message],
|
95 |
-
gr.Audio(value=temp_audio_path, autoplay=True),
|
96 |
-
gr.Textbox(interactive=True),
|
97 |
-
)
|
98 |
-
|
99 |
-
|
100 |
-
def start_interview():
|
101 |
-
|
102 |
-
return reset_interview_action(interview_state.selected_interviewer)
|
103 |
|
104 |
|
105 |
-
|
106 |
-
from datetime import datetime
|
107 |
-
|
108 |
-
def store_interview_report(report_content, folder_path="reports"):
|
109 |
-
"""
|
110 |
-
Stores the interview report in a specified reports folder.
|
111 |
-
|
112 |
-
Args:
|
113 |
-
report_content (str): The content of the report to store.
|
114 |
-
folder_path (str): The directory where the report will be saved.
|
115 |
-
|
116 |
-
Returns:
|
117 |
-
str: The file path of the saved report.
|
118 |
-
"""
|
119 |
-
os.makedirs(folder_path, exist_ok=True)
|
120 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
121 |
-
file_path = os.path.join(folder_path, f"interview_report_{timestamp}.txt")
|
122 |
-
|
123 |
-
try:
|
124 |
-
with open(file_path, "w", encoding="utf-8") as file:
|
125 |
-
file.write(report_content)
|
126 |
-
print(f"[DEBUG] Interview report saved at {file_path}")
|
127 |
-
return file_path
|
128 |
-
except Exception as e:
|
129 |
-
print(f"[ERROR] Failed to save interview report: {e}")
|
130 |
-
return None
|
131 |
-
|
132 |
-
|
133 |
-
def bot_response(chatbot, message):
|
134 |
-
n_of_questions = 5 # Default value
|
135 |
-
interview_state.question_count += 1
|
136 |
-
voice = interview_state.get_voice_setting()
|
137 |
-
|
138 |
-
if interview_state.question_count == 1:
|
139 |
-
response = get_initial_question(interview_state.interview_chain)
|
140 |
-
else:
|
141 |
-
response = get_next_response(
|
142 |
-
interview_state.interview_chain,
|
143 |
-
message["content"],
|
144 |
-
[msg["content"] for msg in chatbot if msg.get("role") == "user"],
|
145 |
-
interview_state.question_count,
|
146 |
-
)
|
147 |
-
|
148 |
-
# Generate and save the bot's audio response
|
149 |
-
audio_buffer = BytesIO()
|
150 |
-
convert_text_to_speech(response, audio_buffer, voice)
|
151 |
-
audio_buffer.seek(0)
|
152 |
-
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
153 |
-
temp_audio_path = temp_file.name
|
154 |
-
temp_file.write(audio_buffer.getvalue())
|
155 |
-
|
156 |
-
interview_state.temp_audio_files.append(temp_audio_path)
|
157 |
-
chatbot.append({"role": "assistant", "content": response})
|
158 |
-
|
159 |
-
# Check if the interview is finished
|
160 |
-
if interview_state.question_count >= n_of_questions:
|
161 |
-
interview_state.interview_finished = True
|
162 |
-
conclusion_message = (
|
163 |
-
"Thank you for your time. The interview is complete. Please review your report."
|
164 |
-
)
|
165 |
-
|
166 |
-
# Generate conclusion audio message
|
167 |
-
conclusion_audio_buffer = BytesIO()
|
168 |
-
convert_text_to_speech(conclusion_message, conclusion_audio_buffer, voice)
|
169 |
-
conclusion_audio_buffer.seek(0)
|
170 |
-
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_conclusion_file:
|
171 |
-
temp_conclusion_audio_path = temp_conclusion_file.name
|
172 |
-
temp_conclusion_file.write(conclusion_audio_buffer.getvalue())
|
173 |
-
interview_state.temp_audio_files.append(temp_conclusion_audio_path)
|
174 |
-
|
175 |
-
# Append conclusion message to chatbot history
|
176 |
-
chatbot.append({"role": "system", "content": conclusion_message})
|
177 |
-
|
178 |
-
# Generate the HR report content
|
179 |
-
report_content = generate_report(
|
180 |
-
interview_state.report_chain,
|
181 |
-
[msg["content"] for msg in chatbot],
|
182 |
-
language,
|
183 |
-
)
|
184 |
-
|
185 |
-
# Save the interview history
|
186 |
-
txt_path = save_interview_history(
|
187 |
-
[msg["content"] for msg in chatbot], language
|
188 |
-
)
|
189 |
-
print(f"[DEBUG] Interview history saved at: {txt_path}")
|
190 |
-
|
191 |
-
# Save the report to the reports folder
|
192 |
-
report_file_path = store_interview_report(report_content)
|
193 |
-
print(f"[DEBUG] Interview report saved at: {report_file_path}")
|
194 |
-
|
195 |
-
return chatbot, gr.File(visible=True, value=txt_path), gr.Audio(value=temp_conclusion_audio_path, autoplay=True)
|
196 |
-
|
197 |
-
return chatbot, gr.Audio(value=temp_audio_path, autoplay=True)
|
198 |
-
|
199 |
-
|
200 |
-
# --- Candidate Interview Implementation ---
|
201 |
load_dotenv()
|
202 |
|
203 |
# Function to read questions from JSON
|
204 |
def read_questions_from_json(file_path):
|
205 |
if not os.path.exists(file_path):
|
206 |
raise FileNotFoundError(f"The file '{file_path}' does not exist.")
|
207 |
-
|
208 |
-
with open(file_path, 'r') as f:
|
209 |
questions_list = json.load(f)
|
210 |
-
|
211 |
if not questions_list:
|
212 |
raise ValueError("The JSON file is empty or has invalid content.")
|
213 |
-
|
214 |
return questions_list
|
215 |
|
216 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
-
import os
|
219 |
-
import json
|
220 |
-
from io import BytesIO
|
221 |
-
import tempfile
|
222 |
-
from collections import deque
|
223 |
-
from langchain_openai import ChatOpenAI
|
224 |
-
from langchain.schema import HumanMessage, SystemMessage
|
225 |
|
226 |
-
#
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
-
# Assuming you have interview_state defined elsewhere and accessible here
|
233 |
-
# interview_state = InterviewState() # You might need to initialize this or pass it as a parameter
|
234 |
|
235 |
def conduct_interview(questions, language="English", history_limit=5):
|
|
|
|
|
|
|
|
|
|
|
236 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
237 |
if not openai_api_key:
|
238 |
-
raise RuntimeError(
|
239 |
-
"OpenAI API key not found. Please add it to your .env file as OPENAI_API_KEY."
|
240 |
-
)
|
241 |
|
|
|
242 |
chat = ChatOpenAI(
|
243 |
-
openai_api_key=openai_api_key,
|
|
|
|
|
|
|
244 |
)
|
245 |
|
246 |
conversation_history = deque(maxlen=history_limit)
|
247 |
system_prompt = (
|
248 |
f"You are Sarah, an empathetic HR interviewer conducting a technical interview in {language}. "
|
249 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
)
|
251 |
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
254 |
|
255 |
initial_message = (
|
256 |
"π Hi there, I'm Sarah, your friendly AI HR assistant! "
|
257 |
"I'll guide you through a series of interview questions to learn more about you. "
|
258 |
"Take your time and answer each question thoughtfully."
|
259 |
)
|
|
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
|
263 |
-
if user_input.lower() in ["exit", "quit"]:
|
264 |
-
history.append(
|
265 |
-
{
|
266 |
-
"role": "assistant",
|
267 |
-
"content": "The interview has ended at your request. Thank you for your time!",
|
268 |
-
}
|
269 |
-
)
|
270 |
-
return history, ""
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
289 |
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
292 |
|
293 |
-
# --- Integrated bot_response functionality starts here ---
|
294 |
|
295 |
-
|
296 |
-
voice = interview_state.get_voice_setting() # Get voice setting
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
|
|
305 |
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
-
# --- Integrated bot_response functionality ends here ---
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
next_question = f"Alright, let's move on. {questions[current_question_index[0]]}"
|
318 |
-
history.append({"role": "assistant", "content": next_question})
|
319 |
|
|
|
|
|
320 |
else:
|
321 |
-
|
322 |
-
history.append(
|
323 |
-
{"role": "assistant", "content": conclusion_message}
|
324 |
-
)
|
325 |
|
326 |
-
# --- Generate report and save history (only at the end) ---
|
327 |
-
interview_state.interview_finished = True
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
interview_state.report_chain,
|
332 |
-
[msg["content"] for msg in history if msg["role"] != "system"], # Consider only user/assistant messages
|
333 |
-
language,
|
334 |
-
)
|
335 |
|
336 |
-
#
|
337 |
-
|
338 |
-
[
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
print(f"[DEBUG] Interview report saved at: {report_file_path}")
|
345 |
|
346 |
-
|
|
|
347 |
|
348 |
-
return interview_step, initial_message
|
349 |
|
|
|
|
|
350 |
|
351 |
|
352 |
-
def
|
353 |
QUESTIONS_FILE_PATH = "questions.json"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
def on_enter_submit_ui(history, user_response):
|
371 |
-
if not user_response.strip():
|
372 |
-
return history, ""
|
373 |
-
history, _ = interview_state.interview_func(user_response, history)
|
374 |
-
return history, ""
|
375 |
-
|
376 |
-
with gr.Blocks(title="AI HR Interview Assistant") as candidate_app:
|
377 |
-
gr.Markdown("<h1 style='text-align: center;'>π Welcome to Your AI HR Interview Assistant</h1>")
|
378 |
-
start_btn = gr.Button("Start Interview", variant="primary")
|
379 |
-
chatbot = gr.Chatbot(label="Interview Chat", height=650, type="messages")
|
380 |
-
user_input = gr.Textbox(label="Your Response", placeholder="Type your answer here...", lines=1)
|
381 |
-
with gr.Row():
|
382 |
-
submit_btn = gr.Button("Submit")
|
383 |
-
clear_btn = gr.Button("Clear Chat")
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
.
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
background-color: #d0d0d0;
|
408 |
-
}
|
409 |
-
.tab-button.selected {
|
410 |
-
background-color: #666;
|
411 |
-
color: white;
|
412 |
-
}
|
413 |
-
""",
|
414 |
-
) as manager_app:
|
415 |
-
gr.HTML(
|
416 |
-
"""
|
417 |
-
<div style='text-align: center; margin-bottom: 20px;'>
|
418 |
-
<h1 style='font-size: 36px; color: #333;'>AI HR Interviewer Manager</h1>
|
419 |
-
<p style='font-size: 18px; color: #666;'>Select your role to start the interview process.</p>
|
420 |
-
</div>
|
421 |
-
"""
|
422 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
|
424 |
with gr.Row():
|
425 |
-
|
426 |
-
|
427 |
-
label="Select User Role",
|
428 |
-
value="Candidate",
|
429 |
-
)
|
430 |
-
proceed_button = gr.Button("π Proceed")
|
431 |
|
432 |
-
|
433 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
-
with candidate_ui:
|
436 |
-
gr.Markdown("## π Candidate Interview")
|
437 |
-
candidate_app = launch_candidate_app()
|
438 |
|
439 |
-
|
440 |
-
gr.Markdown("## π Admin Panel")
|
441 |
with gr.Tab("Generate Questions"):
|
442 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
professions_data = load_json_data(PROFESSIONS_FILE)
|
444 |
-
types_data
|
|
|
445 |
except (FileNotFoundError, json.JSONDecodeError) as e:
|
446 |
print(f"Error loading data from JSON files: {e}")
|
447 |
professions_data = []
|
448 |
-
types_data
|
449 |
|
450 |
profession_names = [
|
451 |
item["profession"] for item in professions_data
|
452 |
-
]
|
453 |
-
|
|
|
|
|
|
|
454 |
|
455 |
with gr.Row():
|
456 |
profession_input = gr.Dropdown(
|
457 |
-
label="Select Profession",
|
|
|
458 |
)
|
459 |
interview_type_input = gr.Dropdown(
|
460 |
-
label="Select Interview Type",
|
|
|
461 |
)
|
462 |
|
463 |
num_questions_input = gr.Number(
|
@@ -470,12 +419,14 @@ def create_manager_app():
|
|
470 |
overwrite_input = gr.Checkbox(
|
471 |
label="Overwrite all_questions.json?", value=True
|
472 |
)
|
|
|
473 |
# Update num_questions_input when interview_type_input changes
|
474 |
interview_type_input.change(
|
475 |
fn=update_max_questions,
|
476 |
inputs=interview_type_input,
|
477 |
outputs=num_questions_input,
|
478 |
)
|
|
|
479 |
generate_button = gr.Button("Generate Questions")
|
480 |
|
481 |
output_text = gr.Textbox(label="Output")
|
@@ -496,16 +447,35 @@ def create_manager_app():
|
|
496 |
with gr.Tab("Generate from PDF"):
|
497 |
gr.Markdown("### π Upload PDF for Question Generation")
|
498 |
pdf_file_input = gr.File(label="Upload PDF File", type="filepath")
|
499 |
-
num_questions_pdf_input = gr.Number(
|
500 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
pdf_status_output = gr.Textbox(label="Status", lines=3)
|
502 |
pdf_question_output = gr.JSON(label="Generated Questions")
|
503 |
-
|
504 |
generate_pdf_button = gr.Button("Generate Questions from PDF")
|
505 |
|
506 |
def update_pdf_ui(pdf_path, num_questions):
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
for status, questions in generate_and_save_questions_from_pdf3(pdf_path, num_questions):
|
508 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
|
510 |
generate_pdf_button.click(
|
511 |
update_pdf_ui,
|
@@ -513,39 +483,141 @@ def create_manager_app():
|
|
513 |
outputs=[pdf_status_output, pdf_question_output],
|
514 |
)
|
515 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
|
518 |
|
519 |
-
|
520 |
-
if role == "Candidate":
|
521 |
-
return {candidate_ui: gr.Column(visible=True), admin_ui: gr.Column(visible=False)}
|
522 |
|
523 |
-
|
524 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
else:
|
526 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
527 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
|
|
533 |
)
|
534 |
|
535 |
-
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
|
545 |
|
546 |
if __name__ == "__main__":
|
547 |
-
|
548 |
-
try:
|
549 |
-
manager_app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
550 |
-
finally:
|
551 |
-
cleanup()
|
|
|
1 |
+
|
|
|
2 |
import os
|
3 |
import json
|
4 |
+
import time
|
5 |
+
import tempfile
|
6 |
from collections import deque
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
from dotenv import load_dotenv
|
10 |
from langchain_openai import ChatOpenAI
|
11 |
+
from langchain.schema import HumanMessage, SystemMessage, AIMessage # Import AIMessage
|
12 |
+
from openai import OpenAI
|
13 |
+
from datetime import datetime # Import datetime for timestamp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
+
# Load environment variables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
load_dotenv()
|
18 |
|
19 |
# Function to read questions from JSON
|
20 |
def read_questions_from_json(file_path):
|
21 |
if not os.path.exists(file_path):
|
22 |
raise FileNotFoundError(f"The file '{file_path}' does not exist.")
|
23 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
|
|
24 |
questions_list = json.load(f)
|
|
|
25 |
if not questions_list:
|
26 |
raise ValueError("The JSON file is empty or has invalid content.")
|
|
|
27 |
return questions_list
|
28 |
|
29 |
+
# Function to save interview history to JSON
|
30 |
+
def save_interview_history(history, filename="interview_history.json"):
|
31 |
+
"""Saves the interview history to a JSON file."""
|
32 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
33 |
+
filepath = f"{timestamp}_{filename}"
|
34 |
+
try:
|
35 |
+
with open(filepath, 'w', encoding='utf-8') as f:
|
36 |
+
json.dump(history, f, ensure_ascii=False, indent=4)
|
37 |
+
print(f"Interview history saved to: {filepath}")
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error saving interview history: {e}")
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Function to convert text to speech (OpenAI's TTS usage, adjust if needed)
|
43 |
+
def convert_text_to_speech(text):
|
44 |
+
start_time = time.time()
|
45 |
+
try:
|
46 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
47 |
+
response = client.audio.speech.create(model="tts-1", voice="alloy", input=text)
|
48 |
+
|
49 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
50 |
+
for chunk in response.iter_bytes():
|
51 |
+
tmp_file.write(chunk)
|
52 |
+
temp_audio_path = tmp_file.name
|
53 |
+
|
54 |
+
print(f"DEBUG - Text-to-speech conversion time: {time.time() - start_time:.2f} seconds")
|
55 |
+
return temp_audio_path
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error during text-to-speech conversion: {e}")
|
58 |
+
return None
|
59 |
+
|
60 |
+
|
61 |
+
# Function to transcribe audio (OpenAI Whisper usage, adjust if needed)
|
62 |
+
def transcribe_audio(audio_file_path):
|
63 |
+
start_time = time.time()
|
64 |
+
try:
|
65 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
66 |
+
with open(audio_file_path, "rb") as audio_file:
|
67 |
+
transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_file)
|
68 |
+
print(f"DEBUG - Audio transcription time: {time.time() - start_time:.2f} seconds")
|
69 |
+
return transcription.text
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error during audio transcription: {e}")
|
72 |
+
return None
|
73 |
|
|
|
|
|
74 |
|
75 |
def conduct_interview(questions, language="English", history_limit=5):
|
76 |
+
"""
|
77 |
+
Sets up a function (interview_step) that handles each round of Q&A.
|
78 |
+
Returns (interview_step, initial_message, final_message).
|
79 |
+
"""
|
80 |
+
start_time = time.time()
|
81 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
82 |
if not openai_api_key:
|
83 |
+
raise RuntimeError("OpenAI API key not found. Please add it to your .env or set it in env variables.")
|
|
|
|
|
84 |
|
85 |
+
# LangChain-based ChatOpenAI
|
86 |
chat = ChatOpenAI(
|
87 |
+
openai_api_key=openai_api_key,
|
88 |
+
model="gpt-4o", # or "gpt-3.5-turbo", etc.
|
89 |
+
temperature=0.7,
|
90 |
+
max_tokens=750
|
91 |
)
|
92 |
|
93 |
conversation_history = deque(maxlen=history_limit)
|
94 |
system_prompt = (
|
95 |
f"You are Sarah, an empathetic HR interviewer conducting a technical interview in {language}. "
|
96 |
+
"You respond politely, concisely, and provide clarifications if needed. "
|
97 |
+
"Ask only ONE question at a time. Wait for the user to respond before asking the next question. "
|
98 |
+
"Provide a very brief, positive acknowledgement of the user's response, *then* ask the next question. "
|
99 |
+
"Limit follow-up questions to a maximum of ONE per main interview question to keep the interview concise." # Added instruction for single follow-up
|
100 |
+
"If the user provides strange answers, give maximum one feedback and continue with the next question. Do not ask more follow up questions if the answer is strange."
|
101 |
+
"After the last interview question is answered by the user, ask 'Do you have any questions for me?'. "
|
102 |
+
"If the user asks questions, answer them concisely and politely. After answering user questions, or if the user says they have no questions, deliver the final message: '{final_message_placeholder}'. "
|
103 |
+
"Keep track of the interview stage and manage the conversation flow accordingly."
|
104 |
)
|
105 |
|
106 |
+
current_question_index = [0] # Store index in a list so it's mutable in nested func
|
107 |
+
is_interview_finished = [False] # Use a list for mutability
|
108 |
+
interview_transcript = [] # List to store full interview history for saving
|
109 |
+
follow_up_count = [0] # Counter for follow-up questions within the current main question
|
110 |
+
interview_stage = ["questioning"] # "questioning", "user_questions_prompt", "answering_user_questions", "final_message_stage", "finished"
|
111 |
+
user_questions_asked = [False] # Flag to track if "Do you have any questions?" has been asked
|
112 |
|
113 |
initial_message = (
|
114 |
"π Hi there, I'm Sarah, your friendly AI HR assistant! "
|
115 |
"I'll guide you through a series of interview questions to learn more about you. "
|
116 |
"Take your time and answer each question thoughtfully."
|
117 |
)
|
118 |
+
final_message_content = (
|
119 |
+
"That wraps up our interview. Thank you for your responsesβit's been great learning more about you!"
|
120 |
+
" I will share the feedback with HR Team, and they will reach out to you soon." # added line
|
121 |
+
)
|
122 |
|
123 |
+
updated_system_prompt = system_prompt.replace("{final_message_placeholder}", final_message_content)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
print(f"DEBUG - conduct_interview setup time: {time.time() - start_time:.2f} seconds")
|
127 |
+
|
128 |
+
def interview_step(user_input, audio_input, history):
|
129 |
+
"""
|
130 |
+
Called each time the user clicks submit or finishes audio recording.
|
131 |
+
`history` is a list of { 'role': '...', 'content': '...' } messages.
|
132 |
+
We must return an updated version of that list in the same format.
|
133 |
+
"""
|
134 |
+
nonlocal current_question_index, is_interview_finished, interview_transcript, follow_up_count, interview_stage, user_questions_asked
|
135 |
+
|
136 |
+
step_start_time = time.time()
|
137 |
+
|
138 |
+
# If there's audio, transcribe it.
|
139 |
+
if audio_input:
|
140 |
+
transcript = transcribe_audio(audio_input)
|
141 |
+
user_input = transcript if transcript else user_input # Use transcribed text if available
|
142 |
+
|
143 |
+
# If user typed "exit" or "quit"
|
144 |
+
if user_input.strip().lower() in ["exit", "quit"]:
|
145 |
+
history.append({
|
146 |
+
"role": "assistant",
|
147 |
+
"content": "The interview has ended at your request. Thank you for your time!"
|
148 |
+
})
|
149 |
+
is_interview_finished[0] = True
|
150 |
+
save_interview_history(interview_transcript) # Save history before exit
|
151 |
+
return history, "", None
|
152 |
+
|
153 |
+
# If the interview is already finished, do nothing.
|
154 |
+
if is_interview_finished[0]:
|
155 |
+
return history, "", None
|
156 |
+
|
157 |
+
# Add user's input to history
|
158 |
+
history.append({"role": "user", "content": user_input})
|
159 |
+
interview_transcript.append({"role": "user", "content": user_input}) # Add to transcript
|
160 |
|
161 |
+
#This is a new user response, add to the short history
|
162 |
+
conversation_history.append({
|
163 |
+
"question": questions[current_question_index[0]] if current_question_index[0] < len(questions) and interview_stage[0] == "questioning" else ("User Question" if interview_stage[0] == "answering_user_questions" else "End of interview"), # to handle index out of bound during final step
|
164 |
+
"answer": user_input
|
165 |
+
})
|
166 |
|
167 |
+
# Build the prompt
|
168 |
+
short_history = "\n".join([
|
169 |
+
f"Q: {entry['question']}\nA: {entry['answer']}"
|
170 |
+
for entry in conversation_history
|
171 |
+
])
|
172 |
|
|
|
173 |
|
174 |
+
messages = []
|
|
|
175 |
|
176 |
+
if interview_stage[0] == "questioning":
|
177 |
+
# Normal question flow
|
178 |
+
combined_prompt = (
|
179 |
+
f"{updated_system_prompt}\n\nPrevious Q&A:\n{short_history}\n\n"
|
180 |
+
f"User's input: {user_input}\n\n"
|
181 |
+
"Acknowledge the user's answer briefly, then ask the *next* question, unless this was the last question."
|
182 |
+
)
|
183 |
+
messages = [
|
184 |
+
SystemMessage(content=updated_system_prompt),
|
185 |
+
HumanMessage(content=combined_prompt),
|
186 |
+
]
|
187 |
|
188 |
+
elif interview_stage[0] == "user_questions_prompt" or interview_stage[0] == "answering_user_questions":
|
189 |
+
# Handling user questions phase
|
190 |
+
combined_prompt = (
|
191 |
+
f"{updated_system_prompt}\n\nPrevious Q&A:\n{short_history}\n\n"
|
192 |
+
f"User's input (User Question): {user_input}\n\n"
|
193 |
+
"Answer the user's question concisely and politely. If the user says they have no questions or similar, then deliver the final message."
|
194 |
+
)
|
195 |
+
messages = [
|
196 |
+
SystemMessage(content=updated_system_prompt),
|
197 |
+
HumanMessage(content=combined_prompt),
|
198 |
+
]
|
199 |
+
elif interview_stage[0] == "final_message_stage":
|
200 |
+
# Should not reach here as final message is sent directly and stage becomes "finished"
|
201 |
+
pass
|
202 |
+
elif interview_stage[0] == "finished":
|
203 |
+
return history, "", None # Interview is finished
|
204 |
|
|
|
205 |
|
206 |
+
if messages: # Proceed only if messages are prepared (not in final_message_stage or finished)
|
207 |
+
# Ask ChatOpenAI
|
208 |
+
response = chat.invoke(messages)
|
209 |
+
response_content = response.content.strip()
|
210 |
|
211 |
+
history.append({"role": "assistant", "content": response_content})
|
212 |
+
interview_transcript.append({"role": "assistant", "content": response_content}) # Add to transcript
|
|
|
|
|
213 |
|
214 |
+
# Convert the LLM's answer to speech
|
215 |
+
audio_file_path = convert_text_to_speech(response_content)
|
216 |
else:
|
217 |
+
audio_file_path = None
|
|
|
|
|
|
|
218 |
|
|
|
|
|
219 |
|
220 |
+
if interview_stage[0] == "questioning":
|
221 |
+
# Advance to the next question or handle end of questions
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
follow_up_count[0] = 0 # Reset follow-up counter for the next main question
|
224 |
+
if current_question_index[0] < len(questions) -1 : # Check against len(questions) - 1
|
225 |
+
current_question_index[0] += 1
|
226 |
+
print(f"DEBUG - question index {current_question_index[0]}")
|
227 |
+
print("DEBUG - Moving to next main question.")
|
228 |
+
print(f"DEBUG - Interview step time: {time.time() - step_start_time:.2f} seconds")
|
229 |
+
return history, "", audio_file_path # Return current audio
|
230 |
+
else:
|
231 |
+
# Last question answered, ask "Do you have any questions?"
|
232 |
+
if not user_questions_asked[0]:
|
233 |
+
user_questions_prompt_message = "Thank you for your answer. Do you have any questions for me?"
|
234 |
+
user_questions_audio_path = convert_text_to_speech(user_questions_prompt_message)
|
235 |
+
history.append({"role": "assistant", "content": user_questions_prompt_message})
|
236 |
+
interview_transcript.append({"role": "assistant", "content": user_questions_prompt_message})
|
237 |
+
interview_stage[0] = "user_questions_prompt"
|
238 |
+
user_questions_asked[0] = True # Ensure this prompt is only asked once
|
239 |
+
print("DEBUG - Asked 'Do you have any questions?'")
|
240 |
+
print(f"DEBUG - Interview step time: {time.time() - step_start_time:.2f} seconds")
|
241 |
+
return history, "", user_questions_audio_path
|
242 |
+
else:
|
243 |
+
# This should not be reached in normal flow for last question, but as a fallback.
|
244 |
+
pass # Fallthrough to handle user questions or finalize below
|
245 |
+
|
246 |
+
if interview_stage[0] == "user_questions_prompt":
|
247 |
+
# Check if user has questions or says no questions
|
248 |
+
if user_input.strip().lower() in ["no", "no questions", "none", "nothing", "that's all", "no, thank you"]:
|
249 |
+
final_audio_path = convert_text_to_speech(final_message_content)
|
250 |
+
history.append({"role": "assistant", "content": final_message_content})
|
251 |
+
interview_transcript.append({"role": "assistant", "content": final_message_content})
|
252 |
+
interview_stage[0] = "finished"
|
253 |
+
is_interview_finished[0] = True
|
254 |
+
save_interview_history(interview_transcript) # Save history at the end
|
255 |
+
print("DEBUG - Interview finished after user said no questions.")
|
256 |
+
print(f"DEBUG - Interview step time: {time.time() - step_start_time:.2f} seconds")
|
257 |
+
return history, "", final_audio_path
|
258 |
+
else:
|
259 |
+
# User asked a question, move to answering stage
|
260 |
+
interview_stage[0] = "answering_user_questions"
|
261 |
+
print("DEBUG - User asked a question, moving to answering stage.")
|
262 |
+
print(f"DEBUG - Interview step time: {time.time() - step_start_time:.2f} seconds")
|
263 |
+
return history, "", audio_file_path # Respond with the AI's answer to user's question in the 'messages' processing block
|
264 |
+
|
265 |
+
elif interview_stage[0] == "answering_user_questions":
|
266 |
+
# After answering user question, go back to user_questions_prompt to allow more questions or finalize
|
267 |
+
interview_stage[0] = "user_questions_prompt"
|
268 |
+
print("DEBUG - Answered user question, back to user_questions_prompt.")
|
269 |
+
print(f"DEBUG - Interview step time: {time.time() - step_start_time:.2f} seconds")
|
270 |
+
return history, "", audio_file_path # Already responded in 'messages' block
|
271 |
+
|
272 |
+
elif interview_stage[0] == "final_message_stage": # Redundant stage, final message sent directly when no more questions
|
273 |
+
pass # Should not reach here
|
274 |
|
275 |
+
elif interview_stage[0] == "finished":
|
276 |
+
return history, "", None # Interview already finished
|
|
|
277 |
|
278 |
+
print(f"DEBUG - Interview step time: {time.time() - step_start_time:.2f} seconds")
|
279 |
+
return history, "", audio_file_path
|
280 |
|
|
|
281 |
|
282 |
+
# Return the step function plus initial/final text
|
283 |
+
return interview_step, initial_message, final_message_content
|
284 |
|
285 |
|
286 |
+
def main():
|
287 |
QUESTIONS_FILE_PATH = "questions.json"
|
288 |
+
try:
|
289 |
+
questions = read_questions_from_json(QUESTIONS_FILE_PATH)
|
290 |
+
num_questions = len(questions) # Count the number of questions
|
291 |
+
print(f"Loaded {num_questions} questions from {QUESTIONS_FILE_PATH}") # Inform user about question count
|
292 |
+
except Exception as e:
|
293 |
+
print(f"Error reading questions: {e}")
|
294 |
+
return
|
295 |
|
296 |
+
try:
|
297 |
+
interview_func, initial_message, final_message = conduct_interview(questions)
|
298 |
+
except Exception as e:
|
299 |
+
print(f"Error setting up interview: {e}")
|
300 |
+
return
|
301 |
+
|
302 |
+
css = """
|
303 |
+
.contain { display: flex; flex-direction: column; }
|
304 |
+
.gradio-container { height: 100vh !important; overflow-y: auto; }
|
305 |
+
#component-0 { height: 100%; }
|
306 |
+
.chatbot { flex-grow: 1; overflow: auto; height: 650px; }
|
307 |
+
.user > div > .message { background-color: #dcf8c6 !important }
|
308 |
+
.bot > div > .message { background-color: #f7f7f8 !important }
|
309 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
+
initial_api_key_status_message = "API Key Status: Checking..."
|
312 |
+
|
313 |
+
# Build Gradio interface
|
314 |
+
with gr.Blocks(css=css) as demo:
|
315 |
+
gr.Markdown(
|
316 |
+
"<h1 style='text-align:center;'>π AI HR Interview Assistant</h1>"
|
317 |
+
)
|
318 |
+
gr.Markdown(
|
319 |
+
"I will ask you a series of questions. Please answer honestly and thoughtfully. "
|
320 |
+
"When you are ready, click **Start Interview** to begin."
|
321 |
+
)
|
322 |
+
|
323 |
+
start_btn = gr.Button("Start Interview", variant="primary")
|
324 |
+
chatbot = gr.Chatbot(
|
325 |
+
label="Interview Chat",
|
326 |
+
height=650,
|
327 |
+
type='messages' # must return a list of dicts: {"role":..., "content":...}
|
328 |
+
)
|
329 |
+
audio_input = gr.Audio(
|
330 |
+
sources=["microphone"],
|
331 |
+
type="filepath",
|
332 |
+
label="Record Your Answer"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
)
|
334 |
+
user_input = gr.Textbox(
|
335 |
+
label="Your Response",
|
336 |
+
placeholder="Type your answer here or use the microphone...",
|
337 |
+
lines=1,
|
338 |
+
)
|
339 |
+
audio_output = gr.Audio(label="Response Audio", autoplay=True)
|
340 |
|
341 |
with gr.Row():
|
342 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
343 |
+
clear_btn = gr.Button("Clear Chat")
|
|
|
|
|
|
|
|
|
344 |
|
345 |
+
# Admin Panel Tab
|
346 |
+
with gr.Tab("Admin Panel", id="admin_tab"):
|
347 |
+
with gr.Tab("API Key Settings"):
|
348 |
+
gr.Markdown("### OpenAI API Key Configuration")
|
349 |
+
api_key_input = gr.Textbox(label="Enter your OpenAI API Key", type="password", placeholder="β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’β’")
|
350 |
+
api_key_status_output = gr.Textbox(label="API Key Status", value=initial_api_key_status_message, interactive=False)
|
351 |
+
update_api_key_button = gr.Button("Update API Key")
|
352 |
+
gr.Markdown("*This application does not store your API key. It is used only for this session and is not persisted when you close the app.*")
|
353 |
+
|
354 |
+
def update_api_key(api_key):
|
355 |
+
os.environ["OPENAI_API_KEY"] = api_key # Caution: Modifying os.environ is session-based
|
356 |
+
global interview_func, initial_message, final_message # Declare globals to update them
|
357 |
+
try:
|
358 |
+
interview_func, initial_message, final_message = conduct_interview(questions) # Re-init interview function
|
359 |
+
return "β
API Key Updated and Loaded."
|
360 |
+
except RuntimeError as e:
|
361 |
+
return f"β API Key Update Failed: {e}"
|
362 |
+
|
363 |
+
|
364 |
+
update_api_key_button.click(
|
365 |
+
update_api_key,
|
366 |
+
inputs=[api_key_input],
|
367 |
+
outputs=[api_key_status_output],
|
368 |
+
)
|
369 |
|
|
|
|
|
|
|
370 |
|
371 |
+
# with gr.Tab("Generate Questions"):
|
|
|
372 |
with gr.Tab("Generate Questions"):
|
373 |
try:
|
374 |
+
# Assuming these are defined in backend2.py
|
375 |
+
from backend2 import (
|
376 |
+
load_json_data,
|
377 |
+
PROFESSIONS_FILE,
|
378 |
+
TYPES_FILE,
|
379 |
+
generate_questions_manager,
|
380 |
+
update_max_questions,
|
381 |
+
generate_and_save_questions_from_pdf3,
|
382 |
+
generate_questions_from_job_description,
|
383 |
+
cleanup
|
384 |
+
)
|
385 |
+
|
386 |
professions_data = load_json_data(PROFESSIONS_FILE)
|
387 |
+
types_data = load_json_data(TYPES_FILE)
|
388 |
+
|
389 |
except (FileNotFoundError, json.JSONDecodeError) as e:
|
390 |
print(f"Error loading data from JSON files: {e}")
|
391 |
professions_data = []
|
392 |
+
types_data = []
|
393 |
|
394 |
profession_names = [
|
395 |
item["profession"] for item in professions_data
|
396 |
+
] if professions_data else []
|
397 |
+
|
398 |
+
interview_types = [
|
399 |
+
item["type"] for item in types_data
|
400 |
+
] if types_data else []
|
401 |
|
402 |
with gr.Row():
|
403 |
profession_input = gr.Dropdown(
|
404 |
+
label="Select Profession",
|
405 |
+
choices=profession_names
|
406 |
)
|
407 |
interview_type_input = gr.Dropdown(
|
408 |
+
label="Select Interview Type",
|
409 |
+
choices=interview_types
|
410 |
)
|
411 |
|
412 |
num_questions_input = gr.Number(
|
|
|
419 |
overwrite_input = gr.Checkbox(
|
420 |
label="Overwrite all_questions.json?", value=True
|
421 |
)
|
422 |
+
|
423 |
# Update num_questions_input when interview_type_input changes
|
424 |
interview_type_input.change(
|
425 |
fn=update_max_questions,
|
426 |
inputs=interview_type_input,
|
427 |
outputs=num_questions_input,
|
428 |
)
|
429 |
+
|
430 |
generate_button = gr.Button("Generate Questions")
|
431 |
|
432 |
output_text = gr.Textbox(label="Output")
|
|
|
447 |
with gr.Tab("Generate from PDF"):
|
448 |
gr.Markdown("### π Upload PDF for Question Generation")
|
449 |
pdf_file_input = gr.File(label="Upload PDF File", type="filepath")
|
450 |
+
num_questions_pdf_input = gr.Number(
|
451 |
+
label="Number of Questions (1-30)",
|
452 |
+
value=5,
|
453 |
+
precision=0,
|
454 |
+
minimum=1,
|
455 |
+
maximum=30,
|
456 |
+
)
|
457 |
+
|
458 |
pdf_status_output = gr.Textbox(label="Status", lines=3)
|
459 |
pdf_question_output = gr.JSON(label="Generated Questions")
|
460 |
+
|
461 |
generate_pdf_button = gr.Button("Generate Questions from PDF")
|
462 |
|
463 |
def update_pdf_ui(pdf_path, num_questions):
|
464 |
+
print(f"[DEBUG] PDF Path: {pdf_path}")
|
465 |
+
print(f"[DEBUG] Requested Number of Questions: {num_questions}")
|
466 |
+
|
467 |
+
all_statuses = []
|
468 |
+
all_questions = []
|
469 |
+
print(f"[DEBUG] Calling generate_and_save_questions_from_pdf3 with {num_questions}")
|
470 |
for status, questions in generate_and_save_questions_from_pdf3(pdf_path, num_questions):
|
471 |
+
print(f"[DEBUG] Status: {status}, Questions Generated: {len(questions)}")
|
472 |
+
all_statuses.append(status)
|
473 |
+
all_questions.append(questions)
|
474 |
+
|
475 |
+
combined_status = "\n".join(all_statuses)
|
476 |
+
final_questions = all_questions[-1] if all_questions else []
|
477 |
+
|
478 |
+
return gr.update(value=combined_status), gr.update(value=final_questions)
|
479 |
|
480 |
generate_pdf_button.click(
|
481 |
update_pdf_ui,
|
|
|
483 |
outputs=[pdf_status_output, pdf_question_output],
|
484 |
)
|
485 |
|
486 |
+
with gr.Tab("Generate from Job Description"):
|
487 |
+
gr.Markdown("### π Enter Job Description for Question Generation")
|
488 |
+
|
489 |
+
job_description_input = gr.Textbox(label="Job Description", placeholder="Type or paste the job description here...", lines=6)
|
490 |
+
num_questions_job_input = gr.Number(
|
491 |
+
label="Number of Questions (1-30)",
|
492 |
+
value=5,
|
493 |
+
precision=0,
|
494 |
+
minimum=1,
|
495 |
+
maximum=30
|
496 |
+
)
|
497 |
+
|
498 |
+
job_status_output = gr.Textbox(label="Status", lines=3)
|
499 |
+
job_question_output = gr.JSON(label="Generated Questions")
|
500 |
+
|
501 |
+
generate_job_button = gr.Button("Generate Questions from Job Description")
|
502 |
+
|
503 |
+
def update_job_description_ui(job_description, num_questions):
|
504 |
+
print(f"[DEBUG] Job Description Length: {len(job_description)} characters")
|
505 |
+
print(f"[DEBUG] Requested Number of Questions: {num_questions}")
|
506 |
|
507 |
+
status, questions = generate_questions_from_job_description(job_description, num_questions)
|
508 |
+
return gr.update(value=status), gr.update(value=questions)
|
509 |
+
|
510 |
+
generate_job_button.click(
|
511 |
+
update_job_description_ui,
|
512 |
+
inputs=[job_description_input, num_questions_job_input],
|
513 |
+
outputs=[job_status_output, job_question_output],
|
514 |
+
)
|
515 |
|
516 |
|
517 |
+
# --- Gradio callback functions ---
|
|
|
|
|
518 |
|
519 |
+
def start_interview():
|
520 |
+
"""
|
521 |
+
Resets the chat and provides an initial greeting and first question.
|
522 |
+
Must return a list of {'role':'assistant','content':'...'} messages
|
523 |
+
plus empty text for user_input and path for audio_output.
|
524 |
+
"""
|
525 |
+
nonlocal interview_func, questions # Access questions from the outer scope
|
526 |
+
try:
|
527 |
+
questions = read_questions_from_json(QUESTIONS_FILE_PATH) # Reload questions in case file changed
|
528 |
+
interview_func, initial_message, final_message = conduct_interview(questions) # Re-init interview func with new questions
|
529 |
+
except Exception as e:
|
530 |
+
error_message = f"Error reloading questions or setting up interview: {e}. Please check questions.json and API Key."
|
531 |
+
print(error_message)
|
532 |
+
tts_path = convert_text_to_speech(error_message)
|
533 |
+
return [{"role": "assistant", "content": error_message}], "", tts_path # Return error message to chatbot
|
534 |
+
|
535 |
+
history = []
|
536 |
+
# Combine initial + the first question
|
537 |
+
if questions:
|
538 |
+
first_q_text = f" Let's begin! Here's your first question: {questions[0]}"
|
539 |
else:
|
540 |
+
first_q_text = "No questions loaded. Please check questions.json or generate questions in the Admin Panel."
|
541 |
+
|
542 |
+
combined = initial_message + first_q_text
|
543 |
+
tts_path = convert_text_to_speech(combined)
|
544 |
+
|
545 |
+
# Return one assistant message to the Chatbot
|
546 |
+
history.append({"role": "assistant", "content": combined})
|
547 |
+
return history, "", tts_path
|
548 |
|
549 |
+
def interview_step_wrapper(user_response, audio_response, history):
|
550 |
+
"""
|
551 |
+
Wrap the 'interview_func' so we always return the correct format:
|
552 |
+
(list_of_dicts, str, audio_file_path).
|
553 |
+
"""
|
554 |
+
new_history, _, audio_path = interview_func(user_response, audio_response, history)
|
555 |
+
return new_history, "", audio_path
|
556 |
+
|
557 |
+
def on_enter_submit(history, user_text):
|
558 |
+
"""
|
559 |
+
If user presses Enter in the textbox. Return updated Chatbot history,
|
560 |
+
empty user_input, and any audio.
|
561 |
+
"""
|
562 |
+
if not user_text.strip():
|
563 |
+
# If empty, do nothing
|
564 |
+
return history, "", None
|
565 |
+
new_history, _, audio_path = interview_func(user_text, None, history)
|
566 |
+
return new_history, "", audio_path
|
567 |
+
|
568 |
+
def clear_chat():
|
569 |
+
"""
|
570 |
+
Re-initialize the interview function entirely
|
571 |
+
to start from scratch, clearing the Chatbot.
|
572 |
+
"""
|
573 |
+
nonlocal interview_func, initial_message, final_message, questions # Access questions
|
574 |
+
interview_func, initial_msg, final_msg = conduct_interview(questions) # Re-init with current questions
|
575 |
+
return [], "", None
|
576 |
+
|
577 |
+
# --- Wire up the event handlers ---
|
578 |
|
579 |
+
# 1) Start button
|
580 |
+
start_btn.click(
|
581 |
+
start_interview,
|
582 |
+
inputs=[],
|
583 |
+
outputs=[chatbot, user_input, audio_output]
|
584 |
)
|
585 |
|
586 |
+
# 2) Audio: when recording stops
|
587 |
+
audio_input.stop_recording(
|
588 |
+
interview_step_wrapper,
|
589 |
+
inputs=[user_input, audio_input, chatbot],
|
590 |
+
outputs=[chatbot, user_input, audio_output]
|
591 |
+
)
|
592 |
|
593 |
+
# 3) Submit button
|
594 |
+
submit_btn.click(
|
595 |
+
interview_step_wrapper,
|
596 |
+
inputs=[user_input, audio_input, chatbot],
|
597 |
+
outputs=[chatbot, user_input, audio_output]
|
598 |
+
)
|
599 |
+
|
600 |
+
# 4) Pressing Enter in the textbox
|
601 |
+
user_input.submit(
|
602 |
+
on_enter_submit,
|
603 |
+
inputs=[chatbot, user_input],
|
604 |
+
outputs=[chatbot, user_input, audio_output]
|
605 |
+
)
|
606 |
+
|
607 |
+
# 5) Clear button
|
608 |
+
clear_btn.click(
|
609 |
+
clear_chat,
|
610 |
+
inputs=[],
|
611 |
+
outputs=[chatbot, user_input, audio_output]
|
612 |
+
)
|
613 |
+
|
614 |
+
# Launch Gradio (remove `share=True` if it keeps failing)
|
615 |
+
demo.launch(
|
616 |
+
server_name="0.0.0.0",
|
617 |
+
server_port=7860,
|
618 |
+
# share=True # Remove or comment out if you get share-link errors
|
619 |
+
)
|
620 |
|
621 |
|
622 |
if __name__ == "__main__":
|
623 |
+
main()
|
|
|
|
|
|
|
|