File size: 13,774 Bytes
d53ccad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import json
from dotenv import load_dotenv
import fitz  # PyMuPDF
from langchain_openai import ChatOpenAI  # Correct import from langchain-openai
from langchain.schema import HumanMessage, SystemMessage  # For creating structured chat messages

QUESTIONS_PATH = "questions.json"

# Load environment variables
load_dotenv()

def split_text_into_chunks(text: str, chunk_size: int) -> list:
    """

    Splits the text into chunks of a specified maximum size.

    """
    # Trim the text to remove leading/trailing whitespace and reduce multiple spaces to a single space
    cleaned_text = " ".join(text.split())
    words = cleaned_text.split(" ")

    chunks = []
    current_chunk = []
    current_length = 0

    for word in words:
        if current_length + len(word) + 1 > chunk_size:
            chunks.append(" ".join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
        else:
            current_chunk.append(word)
            current_length += len(word) + 1

    if current_chunk:
        chunks.append(" ".join(current_chunk))

    return chunks


def distribute_questions_across_chunks(n_chunks: int, n_questions: int) -> list:
    """

    Distributes a specified number of questions across a specified number of chunks.

    """
    questions_per_chunk = [1] * min(n_chunks, n_questions)
    remaining_questions = n_questions - len(questions_per_chunk)

    if remaining_questions > 0:
        for i in range(len(questions_per_chunk)):
            if remaining_questions == 0:
                break
            questions_per_chunk[i] += 1
            remaining_questions -= 1

    while len(questions_per_chunk) < n_chunks:
        questions_per_chunk.append(0)

    return questions_per_chunk


def extract_text_from_pdf(pdf_path):
    text = ""
    try:
        print(f"[DEBUG] Opening PDF: {pdf_path}")
        with fitz.open(pdf_path) as pdf:
            print(f"[DEBUG] Extracting text from PDF: {pdf_path}")
            for page in pdf:
                text += page.get_text()
    except Exception as e:
        print(f"Error reading PDF: {e}")
        raise RuntimeError("Unable to extract text from PDF.")
    return text


def generate_questions_from_text(text, n_questions=5):
    openai_api_key = os.getenv("OPENAI_API_KEY")

    if not openai_api_key:
        raise RuntimeError(
            "OpenAI API key not found. Please add it to your .env file as OPENAI_API_KEY."
        )

    chat = ChatOpenAI(
        openai_api_key=openai_api_key, model="gpt-4", temperature=0.7, max_tokens=750
    )

    messages = [
        SystemMessage(
            content="You are an expert interviewer who generates concise technical interview questions. Do not enumerate the questions. Answer only with questions."
        ),
        HumanMessage(
            content=f"Based on the following content, generate {n_questions} technical interview questions:\n{text}"
        ),
    ]

    try:
        print(f"[DEBUG] Sending request to OpenAI with {n_questions} questions.")
        response = chat.invoke(messages)
        questions = response.content.strip().split("\n\n")
        questions = [q.strip() for q in questions if q.strip()]
        print(f"[DEBUG] Raw questions from LLM: {questions}")

        formatted_questions = []
        for i, q in enumerate(questions):
            formatted_questions.append(f"Question {i+1}: {q}")

        print(f"[DEBUG] Formatted questions: {formatted_questions}")
        return formatted_questions
    except Exception as e:
        print(f"[ERROR] Failed to generate questions: {e}")
        return ["An error occurred while generating questions."]




def save_questions(questions):
    with open(QUESTIONS_PATH, "w") as f:
        json.dump(questions, f, indent=4)



import os
import json
import re


def generate_and_save_questions_from_pdf3(pdf_path, total_questions=5):
    print(f"[INFO] Generating questions from PDF: {pdf_path}")
    print(f"[DEBUG] Number of total questions to generate: {total_questions}")

    if not os.path.exists(pdf_path):
        yield "❌ Error: PDF file not found.", []
        return

    yield "πŸ“„ PDF uploaded successfully. Processing started...", []

    try:
        # 1. Extract text from the PDF
        pdf_text = extract_text_from_pdf(pdf_path)
        if not pdf_text.strip():
            yield "❌ Error: The PDF content is empty or could not be read.", []
            return

        # 2. Split the PDF content into chunks
        chunk_size = 2000  # Adjust as necessary
        chunks = split_text_into_chunks(pdf_text, chunk_size)
        n_chunks = len(chunks)

        yield f"πŸ”„ Splitting text into {n_chunks} chunks...", []

        # 3. Distribute total_questions evenly across the chunks
        base = total_questions // n_chunks
        remainder = total_questions % n_chunks
        questions_per_chunk = [base] * n_chunks
        for i in range(remainder):
            questions_per_chunk[i] += 1

        print(f"[DEBUG] Questions per chunk distribution: {questions_per_chunk}")

        combined_questions = []

        # Helper function to split any chunk's output into individual questions
        def split_into_individual_questions(text_block):
            """

            Attempts to split a text block that might contain multiple questions

            (like '1. Some question? 2. Another question?') into separate items.

            """
            # 1) Remove any "Question X:" prefix (e.g., "Question 1: ")
            text_block = re.sub(r'Question\s*\d+\s*:\s*', '', text_block, flags=re.IGNORECASE)

            # 2) Split on patterns like "1. Something", "2. Something"
            #    This looks for one or more digits, then a dot, then whitespace: "(\d+\.\s+)"
            splitted = re.split(r'\d+\.\s+', text_block.strip())

            # 3) Clean up and filter out empty items
            splitted = [s.strip() for s in splitted if s.strip()]

            return splitted

        # 4. Process each chunk and generate questions
        for i, (chunk, n_questions) in enumerate(zip(chunks, questions_per_chunk)):
            yield f"πŸ”„ Processing chunk {i+1} of {n_chunks} with {n_questions} questions...", []
            
            if n_questions > 0:
                # This function returns either a list of questions or a single string with multiple questions
                questions_output = generate_questions_from_text(chunk, n_questions=n_questions)

                if isinstance(questions_output, list):
                    # If it's already a list, we further ensure each item is split if needed
                    for item in questions_output:
                        combined_questions.extend(split_into_individual_questions(str(item)))
                else:
                    # If it's a single string, we split it
                    combined_questions.extend(split_into_individual_questions(str(questions_output)))

        # 5. Check if the number of generated questions matches the desired total
        if len(combined_questions) != total_questions:
            yield f"⚠️ Warning: Expected {total_questions}, but generated {len(combined_questions)}.", []

        yield f"βœ… Total {len(combined_questions)} questions generated. Saving questions...", []

        # 6. Save the combined questions in `generated_questions_from_pdf.json`
        detailed_save_path = "generated_questions_from_pdf.json"
        with open(detailed_save_path, "w", encoding="utf-8") as f:
            json.dump({"questions": combined_questions}, f, indent=4, ensure_ascii=False)

        # 7. Save only the questions (overwrite `questions.json` if it already exists)
        #simple_save_path = "questions.json"
        #with open(simple_save_path, "w", encoding="utf-8") as f:
        #    json.dump(combined_questions, f, indent=4, ensure_ascii=False)

        save_questions(combined_questions)
        print(f"[INFO] Questions saved to {QUESTIONS_PATH}")

        yield "βœ… PDF processing complete. Questions saved successfully!", combined_questions

    except Exception as e:
        error_message = f"❌ Error during question generation: {str(e)}"
        print(f"[ERROR] {error_message}")
        yield error_message, []

def generate_questions_from_job_description_old(job_description, num_questions):
    print(f"[DEBUG] Generating {num_questions} questions from job description.")

    if not job_description.strip():
        return "❌ Error: Job description is empty.", []

    try:
        questions = generate_questions_from_text(job_description, num_questions=num_questions)

        if not questions:
            return "❌ Error: No questions generated.", []

        return "βœ… Questions generated successfully!", questions

    except Exception as e:
        error_message = f"❌ Error during question generation: {str(e)}"
        print(f"[ERROR] {error_message}")
        return error_message, []

import os
import json
import math
import re
import os
import json
import math
import re

def distribute_questions_evenly(total_questions, n_chunks):
    base = total_questions // n_chunks
    remainder = total_questions % n_chunks

    questions_per_chunk = [base] * n_chunks

    # Distribute the remainder by incrementing the first `remainder` chunks
    for i in range(remainder):
        questions_per_chunk[i] += 1

    return questions_per_chunk


def generate_questions_from_job_description(job_description, total_questions=5):
    print(f"[DEBUG] Generating {total_questions} questions from job description.")

    if not job_description.strip():
        return "❌ Error: Job description is empty.", []

    try:
        # 1. Split the job description into chunks
        chunk_size = 2000  # Adjust as necessary
        chunks = split_text_into_chunks(job_description, chunk_size)
        n_chunks = len(chunks)

        print(f"[DEBUG] Splitting text into {n_chunks} chunks...")

        # 2. Distribute total_questions evenly across the chunks
        questions_per_chunk = distribute_questions_evenly(total_questions, n_chunks)
        print(f"[DEBUG] Questions per chunk distribution: {questions_per_chunk}")

        combined_questions = []

        # Helper function to split any chunk's output into individual questions
        def split_into_individual_questions(text_block):
            """

            Attempts to split a text block that might contain multiple questions

            (like '1. Some question? 2. Another question?') into separate items.

            """
            # Remove any "Question X:" prefix (e.g., "Question 1: ")
            text_block = re.sub(r'Question\s*\d+\s*:\s*', '', text_block, flags=re.IGNORECASE)

            # Split on patterns like "1. Something", "2. Something"
            splitted = re.split(r'\d+\.\s+', text_block.strip())

            # Clean up and filter out empty items
            return [s.strip() for s in splitted if s.strip()]

        # 3. Process each chunk and generate questions
        for i, (chunk, n_questions) in enumerate(zip(chunks, questions_per_chunk)):
            print(f"[DEBUG] Processing chunk {i+1} of {n_chunks} with {n_questions} questions...")
            
            if n_questions > 0:
                questions_output = generate_questions_from_text(chunk, n_questions=n_questions)

                if isinstance(questions_output, list):
                    for item in questions_output:
                        combined_questions.extend(split_into_individual_questions(str(item)))
                else:
                    combined_questions.extend(split_into_individual_questions(str(questions_output)))

        if len(combined_questions) != total_questions:
            print(f"⚠️ Warning: Expected {total_questions}, but generated {len(combined_questions)}.")

        print(f"βœ… Total {len(combined_questions)} questions generated. Saving questions...")

        # Save the combined questions in `generated_questions_from_job_description.json`
        detailed_save_path = "generated_questions_from_job_description.json"
        with open(detailed_save_path, "w", encoding="utf-8") as f:
            json.dump({"questions": combined_questions}, f, indent=4, ensure_ascii=False)

        # Save only the questions (overwrite `questions.json` if it already exists)
        #simple_save_path = "questions.json"
        #with open(simple_save_path, "w", encoding="utf-8") as f:
        #    json.dump(combined_questions, f, indent=4, ensure_ascii=False)

        save_questions(combined_questions)
        print(f"[INFO] Questions saved to {QUESTIONS_PATH}")
        return "βœ… Job description processing complete. Questions saved successfully!", combined_questions

    except Exception as e:
        error_message = f"❌ Error during question generation: {str(e)}"
        print(f"[ERROR] {error_message}")
        return error_message, []


if __name__ == "__main__":
    pdf_path = "professional_machine_learning_engineer_exam_guide_english.pdf"  # Replace with your PDF path

    try:
        # Using the generator to get the results
        for status, questions in generate_and_save_questions_from_pdf3(pdf_path, total_questions=5):
            print(status)  # Print the status message
            if questions:
                print(json.dumps(questions, indent=2))  # Print the questions if available
    except Exception as e:
        print(f"Failed to generate questions: {e}")