from langchain.text_splitter import RecursiveCharacterTextSplitter from streamlit_mic_recorder import mic_recorder from streamlit.components.v1 import html,iframe from huggingface_hub import InferenceClient import google.generativeai as genai import speech_recognition as sr from PyDeepLX import PyDeepLX from docx import Document from openai import OpenAI import streamlit as st from gtts import gTTS from PIL import Image import pandas as pd import requests import hashlib import base64 import langid import PyPDF2 import io if "openai_model_list" not in st.session_state: # author parameter st.session_state.author_key = "" st.session_state.gpt_choice = True st.session_state.gpt_choice_name = "Gemini" # chat parameter st.session_state.mode_list = ["**🤖Chat**","**🔤Deeplx**","**🎨Txt2Img**","**📊Data**"] st.session_state.mode = "**🤖Chat**" st.session_state.sys_prompt = "" st.session_state.chat_speech = True st.session_state.speech_input = False st.session_state.speech_input_lists = ["中文-zh","English-en","日本語-ja","Русский язык-ru","Deutsch-de","Français-fr","중국어-ko"] st.session_state.speech_language = st.session_state.speech_input_lists[0] st.session_state.audio_prompt = None st.session_state.chat_short_file = None st.session_state.openai_model_list = [ "gpt-3.5-turbo", "gpt-3.5-turbo-instruct", "gpt-4", "gpt-4-32k", "gpt-4-1106-preview", ] st.session_state.openai_model = st.session_state.openai_model_list[0] st.session_state.openai_session = [] st.session_state.openai_history = [] st.session_state.google_model_list = ["gemini-pro","gemini-pro-vision"] st.session_state.google_model = st.session_state.google_model_list[0] st.session_state.google_session = [] st.session_state.google_histgory = [] st.session_state.google_attachment = None # translate parameter st.session_state.translate_session = [] st.session_state.lang_lists = ["auto","中文-zh","English-en","日本語-ja","Русский язык-ru","Deutsch-de","Français-fr","중국어-ko"] st.session_state.target_lang = st.session_state.lang_lists[0] st.session_state.translate_speech = True st.session_state.translate_api_list = [ "https://api.deeplx.org/translate", "https://deeplx.aivvm.com/", "PyDeeplx"] st.session_state.translate_api = st.session_state.translate_api_list[0] # draw parameter st.session_state.draw_model = "初始-StableDiffusion-2-1" st.session_state.draw_model_list = { "现实-AbsoluteReality_v1.8.1":"https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1", "现实-Absolute-Reality-1.81":"https://api-inference.huggingface.co/models/Lykon/absolute-reality-1.81", "动漫-AingDiffusion9.2":"https://api-inference.huggingface.co/models/digiplay/AingDiffusion9.2", "现实动漫-BluePencilRealistic_v01":"https://api-inference.huggingface.co/models/digiplay/bluePencilRealistic_v01", "动漫写实-Counterfeit-v2.5":"https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5", "动漫写实-Counterfeit-v25-2.5d-tweak":"https://api-inference.huggingface.co/models/digiplay/counterfeitV2525d_tweak", "动漫可爱-Cuteyukimix":"https://api-inference.huggingface.co/models/stablediffusionapi/cuteyukimix", "动漫可爱-Cuteyukimixadorable":"https://api-inference.huggingface.co/models/stablediffusionapi/cuteyukimixadorable", "现实动漫-Dreamshaper-7":"https://api-inference.huggingface.co/models/Lykon/dreamshaper-7", "现实动漫-Dreamshaper_LCM_v7":"https://api-inference.huggingface.co/models/SimianLuo/LCM_Dreamshaper_v7", "动漫3D-DucHaitenDreamWorld":"https://api-inference.huggingface.co/models/DucHaiten/DucHaitenDreamWorld", "现实-EpiCRealism":"https://api-inference.huggingface.co/models/emilianJR/epiCRealism", "现实照片-EpiCPhotoGasm":"https://api-inference.huggingface.co/models/Yntec/epiCPhotoGasm", "动漫丰富-Ether-Blu-Mix-b5":"https://api-inference.huggingface.co/models/tensor-diffusion/Ether-Blu-Mix-V5", "动漫-Flat-2d-Animerge":"https://api-inference.huggingface.co/models/jinaai/flat-2d-animerge", "动漫风景-Genshin-Landscape-Diffusion":"https://api-inference.huggingface.co/models/Apocalypse-19/Genshin-Landscape-Diffusion", "现实照片-Juggernaut-XL-v7":"https://api-inference.huggingface.co/models/stablediffusionapi/juggernaut-xl-v7", "现实风景-Landscape_PhotoReal_v1":"https://api-inference.huggingface.co/models/digiplay/Landscape_PhotoReal_v1", "艺术水墨-MoXin":"https://api-inference.huggingface.co/models/zhyemmmm/MoXin", "现实写实-OnlyRealistic":"https://api-inference.huggingface.co/models/stablediffusionapi/onlyrealistic", "现实-Realistic-Vision-v51":"https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51", "初始-StableDiffusion-2-1":"https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1", "初始-StableDiffusion-XL-0.9":"https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-0.9", "动漫-TMND-Mix":"https://api-inference.huggingface.co/models/stablediffusionapi/tmnd-mix", "animagine-XL-3.0":"https://api-inference.huggingface.co/models/cagliostrolab/animagine-xl-3.0", "艺术-Zavychromaxl-v3":"https://api-inference.huggingface.co/models/stablediffusionapi/zavychromaxlv3", "Dalle-v1.1":"https://api-inference.huggingface.co/models/dataautogpt3/OpenDalleV1.1", "Dalle-3-xl":"https://api-inference.huggingface.co/models/openskyml/dalle-3-xl", "playground-v2-美化":"https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic", "Dalle-proteus-v0.2":"https://api-inference.huggingface.co/models/dataautogpt3/ProteusV0.2", } st.session_state.negative_prompt = "extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, bad anatomy, bad proportions, extra limbs, cloned face, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs" st.session_state.StableDiffusion_URL = st.session_state.draw_model_list[st.session_state.draw_model] st.session_state.auto_translate = True st.session_state.chat_draw = True st.session_state.wait_for_model = True st.session_state.draw_sesson = [] st.session_state.draw_chat_system = """ I want you to act as a prompt generator for Midjourney's artificial intelligence program. Your job is to based on conversations with users provide detailed and creative descriptions that will inspire unique and interesting images from the AI. Keep in mind that the AI is capable of understanding a wide range of language and can interpret abstract concepts, so feel free to be as imaginative and descriptive as possible. For example, you could describe a scene from a futuristic city, or a surreal landscape filled with strange creatures. The more detailed and imaginative your description, the more interesting the resulting image will be. Remember to generate a description in English only. """ st.session_state.chat_draw_session = [{'role':'system','content':st.session_state.draw_chat_system}] st.session_state.prompts_gpt = pd.DataFrame(columns=['act', 'prompt']) # token st.session_state.openai_api_key = "" st.session_state.openai_base_url = "" st.session_state.google_api_key = "" st.session_state.huggingface_token = "" # 类 st.session_state.sr = sr.Recognizer() st.session_state.openai_client = None st.session_state.google_client = None ########################### element ########################### header = st.empty() # 整体页面 show_app = st.container() with show_app: # 文字聊天 show_chat = st.container() # 语音对话 show_talk = st.container() # deepl翻译 show_translate = st.container() # 文本生成图片 show_draw = st.container() # 数据 show_data = st.container() ########################### function ########################### @st.cache_data def sha256_hash(string): # 创建SHA256哈希对象 sha256_hasher = hashlib.sha256() # 将字符串编码为字节流并更新哈希对象 sha256_hasher.update(string.encode('utf-8')) # 获取哈希结果 hashed_string = sha256_hasher.hexdigest() return hashed_string def get_response(flag,model,history,stream=True): try: if not flag: response = st.session_state.openai_client.chat.completions.create( model = model, messages = history, stream=stream ) else: response = st.session_state.google_client.generate_content( contents = history, stream=stream, safety_settings={'HARASSMENT':'block_none'} ) return True,response except Exception as e: st.error("Chat AI response error:{}".format(e)) return False,e def chat_ai(message,model,history,session,flag=st.session_state.gpt_choice,attachment=st.session_state.google_attachment): if len(history) != 0 and len(session) != 0: if history[-1]["role"] == "user": history.pop() if session[-1]["role"] == "user": session.pop() # openai if not flag: history.append({"role":"user","content":message}) session.append({"role":"user","content":message}) response_check,response = get_response(flag,model,history) if response_check: show_chat_page(flag,session) reply={"role":"assistant","content":""} with show_chat: with st.chat_message(reply["role"]): line = st.empty() for chunk in response: message = chunk.choices[0].delta.content if message is not None: reply["content"] += message line.empty() line.write(reply["content"]) history.append(reply) session.append(reply) if st.session_state.chat_speech == True: if reply["content"] != "": mytts(reply["content"]) else: history.pop() session.pop() st.error(response) # google else: if model == "gemini-pro-vision": if attachment is not None: history=[{"role":"user","parts":[message,]+attachment},] session=[{"role":"user","parts":[message,]+attachment},] attachment = None else: st.error("Please attach a Image") return False else: history.append({"role":"user","parts":[message,]}) session.append({"role":"user","parts":[message,]}) response_check,response = get_response(flag,model,history) if response_check: show_chat_page(flag,session) reply = {"role":"model","parts":["",]} with show_chat: with st.chat_message(reply["role"]): line = st.empty() for chunk in response: try: message = chunk.text reply["parts"][0] += message line.empty() line.write(reply["parts"][0]) except Exception as e: print(f'{type(e).__name__}: {e}') history.append(reply) session.append(reply) if st.session_state.chat_speech == True: if reply["parts"][0]!="": mytts(reply["parts"][0]) else: if model != "gemini-pro-vision": history.pop() session.pop() st.error(response) def mytts(text): def autoplay_audio(audio_data:io.BytesIO): data = audio_data.getvalue() b64 = base64.b64encode(data).decode() md = f""" """ html(md) text = text.replace("```"," ").replace("`"," ").replace("***"," ").replace("**"," ").replace("$$"," ").replace("###"," ").replace("##"," ").replace("#"," ").replace("---"," ") lang,conf = langid.classify(text) tts = gTTS(text=text,lang=lang) speach_BytesIO = io.BytesIO() tts.write_to_fp(speach_BytesIO) autoplay_audio(speach_BytesIO) st.write(lang,conf) @st.cache_data def audio2text(audio_prompt,language): audio_data = sr.AudioData(audio_prompt['bytes'],audio_prompt['sample_rate'],audio_prompt['sample_width']) output = st.session_state.sr.recognize_google(audio_data,language=language) return output def show_chat_page(flag,session): if not flag: with show_chat: for section in session: with st.chat_message(section["role"]): st.write(section["content"]) else: with show_chat: for section in session: with st.chat_message(section["role"]): for piece in section["parts"]: if isinstance(piece,str): st.write(piece) elif isinstance(piece,Image.Image): st.image(piece,use_column_width=True) @st.cache_data def get_file_reader(file,name,type): def get_text(file,type): def extract_text_from_docx(file): doc = Document(file) text = "" for paragraph in doc.paragraphs: text += paragraph.text + "\n" return text def extract_text_from_pdf(file): pdf = PyPDF2.PdfReader(file) text = "" for page_num in range(len(pdf.pages)): page = pdf.pages[page_num] text += page.extract_text() return text # 文件类型判断 if type == 'pdf': text = extract_text_from_pdf(file) elif type == 'docx': text = extract_text_from_docx(file) elif type == 'txt' or type == 'md' or type == 'py' or type == 'c' or type == 'cpp' or type == 'js': text = file.getvalue().decode("utf-8") else: st.error("The file type is not supported.(only pdf, docx, txt, md supported)") return [] return text def get_splitted_text(text): r_splitter = RecursiveCharacterTextSplitter( chunk_size=4000, chunk_overlap=0 ) return r_splitter.split_text(text) assistant_reply = "Acknowledged" start_content = "You are a file reading bot. Next, the user will send a file. After reading, you should fully understand the content of the file and be able to analyze, interpret, and respond to questions related to the file in both Chinese and Markdown formats. Please only answer questions based on the content of the document. If the question is not mentioned in the document, please reply directly to the article without referring to other materials. Answer step-by-step." end_content = "File sent. Next, please reply in Chinese and format your response using markdown based on the content.'" st.session_state.openai_history = [{'role':'system','content':start_content}] st.session_state.google_histgory = [{'role':'user','parts':[start_content,]},{'role':'model','parts':[assistant_reply,]}] # 文本提取并拆分 text = get_text(file,type) text_list = get_splitted_text(text) pages = len(text_list) start_message = f"The file name is {name}, and I will now send you the content of the file in {len(text_list)} sections. Please ensure that you are ready to receive the instructions for sending the file. Once you receive the instructions, please be prepared to answer my question." st.session_state.openai_history+=[{'role':'user','content':start_message},{'role':'assistant','content':assistant_reply}] st.session_state.google_histgory+=[{'role':'user','parts':[start_message,]},{'role':'model','parts':[assistant_reply,]}] # 分段输入 for i in range(pages): st.session_state.openai_history+=[{'role':'user','content':text_list[i]},{'role':'assistant','content':assistant_reply}] st.session_state.google_histgory+=[{'role':'user','parts':[text_list[i],]},{'role':'model','parts':[assistant_reply,]}] # 结束文本输入 st.session_state.openai_history+=[{'role':'user','content':end_content},{'role':'assistant','content':"I have finished reading the file content, you can ask me anything."}] st.session_state.google_histgory+=[{'role':'user','parts':[end_content,]},{'role':'model','parts':["I have finished reading the file content, you can ask me anything.",]}] def deeplx_translate(text,source_lang,target_lang,api): if api == st.session_state.translate_api_list[0]: if source_lang is None: source_lang="auto" headers = {"Content-Type": "application/json"} body = { "text":text, "target_lang":target_lang, "source_lang":source_lang } try: response = requests.post(api, json=body, headers=headers) return True,response.json()["data"] except Exception as e: st.error("Deeplx response error: {}".format(e)) return False,e elif api == st.session_state.translate_api_list[1]: if source_lang is None: source_lang,conf = langid.classify(text) headers = {"Content-Type": "application/json"} body = { "text":text, "target_lang":target_lang, "source_lang":source_lang } try: response = requests.post(api, json=body, headers=headers) return True,response.json()["response"]["translated_text"] except Exception as e: st.error("Deeplx response error: {}".format(e)) return False,e elif api == st.session_state.translate_api_list[-1]: try: response = PyDeepLX.translate(text,'auto',target_lang) return True,response except Exception as e: st.error("Deeplx response error: {}".format(e)) return False,e def translate(text,target_lang,api=st.session_state.translate_api): st.session_state.translate_session.append({"role":"user","content":text}) show_translate_page() if target_lang == "to": lang,conf = langid.classify(text) if lang == "zh": flag,reply = deeplx_translate(text,lang,"en",api) else: lang_list = [i[-2:] for i in st.session_state.lang_lists] lang_list.remove("to") if lang not in lang_list: flag,reply = deeplx_translate(text,"en","zh",api) else: flag,reply = deeplx_translate(text,lang,"zh",api) else: flag,reply = deeplx_translate(text,None,target_lang,api) if flag: st.session_state.translate_session.append({"role":"assistant","content":reply}) with show_translate.chat_message("assistant"): st.write(reply) if st.session_state.translate_speech == True: if reply != "": mytts(reply) else: st.error(reply) def show_translate_page(): for section in st.session_state.translate_session: with show_translate.chat_message(section['role']): st.write(section['content']) def text2img(prompt,token=st.session_state.huggingface_token,StableDiffusion_URL=st.session_state.StableDiffusion_URL): def query(client,payload): try: response = client.post(json=payload,model=StableDiffusion_URL) return True, response except requests.exceptions.RequestException as e: return False,e huggingface_client = InferenceClient(token=token) st.session_state.draw_sesson.append({"role":"user","prompt":prompt}) if st.session_state.chat_draw: if len(st.session_state.chat_draw_session) != 0: if st.session_state.chat_draw_session[-1]["role"] == "user": st.session_state.chat_draw_session.pop() st.session_state.chat_draw_session.append({"role":"user","content":prompt}) response_check,response = get_response(False,st.session_state.openai_model,st.session_state.chat_draw_session,stream=False) if response_check: prompt = response.choices[0].message.content st.session_state.chat_draw_session.append({"role":"assistant","content":prompt}) if st.session_state.auto_translate: lang,conf = langid.classify(prompt) if lang != "en": flag,prompt = deeplx_translate(prompt,lang,"en",st.session_state.translate_api) if not flag: return False show_draw_page() with show_draw.chat_message("assistant"): st.write("**"+st.session_state.draw_model+"**: "+prompt) flag,response = query(huggingface_client,{ "inputs":prompt, "negative_prompt":st.session_state.negative_prompt, }) image = response st.session_state.draw_sesson.append({"role":"assistant","prompt":"**"+st.session_state.draw_model+"**: "+prompt,"image":image,"flag":flag}) if flag: st.image(image,use_column_width=True) else: st.write(image) else: if st.session_state.auto_translate: lang,conf = langid.classify(prompt) if lang != "en": flag,prompt = deeplx_translate(prompt,lang,"en",st.session_state.translate_api) if not flag: return False show_draw_page() with show_draw.chat_message("assistant"): st.write("**"+st.session_state.draw_model+"**: "+prompt) flag,response = query(huggingface_client,{ "inputs":prompt, "negative_prompt":st.session_state.negative_prompt, }) image = response st.session_state.draw_sesson.append({"role":"assistant","prompt":"**"+st.session_state.draw_model+"**: "+prompt,"image":image,"flag":flag}) if flag: st.image(image,use_column_width=True) else: st.write(image) def show_draw_page(): for section in st.session_state.draw_sesson: with show_draw.chat_message(section["role"]): if section["role"] == "user": st.write(section["prompt"]) else: st.write(section["prompt"]) if section["flag"]: st.image(section["image"],use_column_width=True) else: st.write(section["image"]) @st.cache_data def get_data(file): data = pd.read_csv(file) return data ########################### mount ########################### def new_chat(): # openai if st.session_state.sys_prompt == "": st.session_state.openai_history = [] else: st.session_state.openai_history = [{"role":"system","content":st.session_state.sys_prompt},] st.session_state.openai_session = [] # google st.session_state.google_histgory = [] st.session_state.google_session = [] if st.session_state.google_api_key: genai.configure(api_key=st.session_state.google_api_key) st.session_state.google_client = genai.GenerativeModel(st.session_state.google_model) # translate st.session_state.translate_session = [] # draw st.session_state.draw_sesson = [] st.session_state.chat_draw_session = [{'role':'system','content':st.session_state.draw_chat_system}] def author_channel(): author_key_hash = sha256_hash(st.session_state.author_key.strip()) if author_key_hash in st.secrets.pwsds: # openai st.session_state.openai_api_key = st.secrets.openai_api_keys[st.secrets.pwsds[author_key_hash]] st.session_state.openai_base_url = st.secrets.openai_base_urls[st.secrets.pwsds[author_key_hash]] st.session_state.openai_client = OpenAI( api_key=st.session_state.openai_api_key, base_url=st.session_state.openai_base_url ) # google st.session_state.google_api_key = st.secrets.google_api_keys[st.secrets.pwsds[author_key_hash]] genai.configure(api_key=st.session_state.google_api_key) st.session_state.google_client = genai.GenerativeModel(st.session_state.google_model) # huggingface st.session_state.huggingface_token = st.secrets.huggingface_tokens[st.secrets.pwsds[author_key_hash]] def gpt_choice(): st.session_state.gpt_choice = not st.session_state.gpt_choice if st.session_state.gpt_choice: st.session_state.gpt_choice_name = "Gemini" else: st.session_state.gpt_choice_name = "ChatGPT" def upload_google_attachment(): st.session_state.google_attachment = st.session_state.google_attachment if st.session_state.google_attachment is not None: attachment = [] for upload_img in st.session_state.google_attachment: attachment.append(Image.open(upload_img)) st.session_state.google_attachment = attachment def get_file_chat(): def collect_file(file_upload): file_name = ".".join(file_upload.name.split('.')[0:-1]) file_type = file_upload.name.split('.')[-1] return file_name,file_type st.session_state.chat_short_file = st.session_state.chat_short_file if st.session_state.chat_short_file: file_name,file_type = collect_file(st.session_state.chat_short_file) get_file_reader(st.session_state.chat_short_file,file_name,file_type) def change_paramater(): st.session_state.openai_api_key = st.session_state.openai_api_key st.session_state.openai_base_url = st.session_state.openai_base_url st.session_state.sys_prompt = st.session_state.sys_prompt st.session_state.google_api_key = st.session_state.google_api_key st.session_state.chat_speech = st.session_state.chat_speech st.session_state.google_api_key = st.session_state.google_api_key st.session_state.speech_input = st.session_state.speech_input st.session_state.speech_language = st.session_state.speech_language st.session_state.draw_model = st.session_state.draw_model st.session_state.StableDiffusion_URL = st.session_state.draw_model_list[st.session_state.draw_model] st.session_state.huggingface_token = st.session_state.huggingface_token st.session_state.negative_prompt = st.session_state.negative_prompt st.session_state.mode = st.session_state.mode st.session_state.translate_api = st.session_state.translate_api st.session_state.target_lang = st.session_state.target_lang st.session_state.translate_speech = st.session_state.translate_speech st.session_state.auto_translate = st.session_state.auto_translate st.session_state.chat_draw = st.session_state.chat_draw st.session_state.wait_for_model = st.session_state.wait_for_model st.session_state.prompts_gpt = st.session_state.prompts_gpt def get_save(): change_paramater() # openai if st.session_state.openai_api_key and st.session_state.openai_base_url: st.session_state.openai_client = OpenAI( api_key=st.session_state.openai_api_key, base_url=st.session_state.openai_base_url ) if len(st.session_state.openai_history) == 0: if st.session_state.sys_prompt != "": st.session_state.openai_history = [{"role":"system","content":st.session_state.sys_prompt},] # google if st.session_state.google_api_key: genai.configure(api_key=st.session_state.google_api_key) st.session_state.google_client = genai.GenerativeModel(st.session_state.google_model) # show if st.session_state.mode == "**🤖Chat**": if not st.session_state.gpt_choice: show_chat_page(False,st.session_state.openai_session) else: show_chat_page(True,st.session_state.google_session) elif st.session_state.mode == "**🔤Deeplx**": show_translate_page() elif st.session_state.mode == "**🎨Txt2Img**": show_draw_page() ########################### sidebar ########################### with st.sidebar: # 新的开始 with st.container(): st.button("🆕 New Chat",use_container_width=True,key="New Chat") if st.session_state.get("New Chat"): new_chat() # 作者通道 with st.container(): st.session_state.author_key = st.text_input("author channel",type='password',value=st.session_state.author_key,key="author channel") if st.session_state.get("author channel"): author_channel() # 聊天设置 with st.container(): with st.expander("**Chat Settings**"): col1,col2 = st.columns(2) with col1: st.session_state.gpt_choice = st.toggle(st.session_state.gpt_choice_name,value=st.session_state.gpt_choice,on_change=gpt_choice) with col2: st.session_state.chat_speech = st.toggle("speech",st.session_state.chat_speech,on_change=change_paramater) if not st.session_state.gpt_choice: st.session_state.openai_model = st.selectbox("Chat Models",sorted(st.session_state.openai_model_list),on_change=new_chat) st.session_state.openai_api_key = st.text_input("api key",value=st.session_state.openai_api_key,type='password') st.session_state.openai_base_url = st.text_input("api base",value=st.session_state.openai_base_url) st.session_state.sys_prompt = st.text_input("sys prompt",value=st.session_state.sys_prompt,on_change=change_paramater) st.session_state.chat_short_file = st.file_uploader("Chat short file",label_visibility="collapsed") st.button("ChatFile",use_container_width=True,key="ChatFile") if st.session_state.get("ChatFile"): get_file_chat() else: st.session_state.google_model = st.selectbox("Chat Models",sorted(st.session_state.google_model_list),on_change=new_chat) st.session_state.google_api_key = st.text_input("api key",value=st.session_state.google_api_key,type='password',on_change=change_paramater) if st.session_state.google_model == "gemini-pro-vision": st.session_state.google_attachment = st.file_uploader("Image for gemini-pro-vision",type=['jpg','png','jpeg'],accept_multiple_files=True,label_visibility="collapsed") st.button("Send Image",key="google attachment",use_container_width=True) if st.session_state.get("google attachment"): upload_google_attachment() else: st.session_state.chat_short_file = st.file_uploader("Chat short file",label_visibility="collapsed") st.button("ChatFile",use_container_width=True,key="ChatFile") if st.session_state.get("ChatFile"): get_file_chat() st.session_state.speech_input = st.toggle("talk mode",st.session_state.speech_input,on_change=change_paramater) # 翻译设置 with st.container(): with st.expander("**Translate Settings**"): st.session_state.translate_api = st.selectbox("Translate API",st.session_state.translate_api_list,on_change=change_paramater) st.session_state.target_lang = st.selectbox("Target Language",st.session_state.lang_lists,on_change=change_paramater) st.session_state.translate_speech = st.toggle('translate speech', st.session_state.translate_speech,on_change=change_paramater) # 绘画设置 with st.container(): with st.expander("**Draw Settings**"): st.session_state.draw_model = st.selectbox('Draw Models', sorted(st.session_state.draw_model_list.keys(),key=lambda x:x.split("-")[0]),on_change=change_paramater) st.session_state.huggingface_token = st.text_input('Huggingface Token',type='password',value=st.session_state.huggingface_token,on_change=change_paramater) st.session_state.negative_prompt = st.text_input('Negative Prompt',value=st.session_state.negative_prompt,on_change=change_paramater) # col1,col2,col3 = st.columns(3) # with col1: st.session_state.chat_draw = st.toggle('Chat', st.session_state.chat_draw,on_change=change_paramater) # with col2: st.session_state.auto_translate = st.toggle('Translate', st.session_state.auto_translate,on_change=change_paramater) # with col3: st.session_state.wait_for_model = st.toggle('Wait', st.session_state.wait_for_model,on_change=change_paramater) # 保存 st.button("Save",use_container_width=True,key="Save") if st.session_state.get("Save"): get_save() # 模式 with st.container(): with st.container(): st.session_state.mode = st.radio("Choose Mode",st.session_state.mode_list,on_change=change_paramater) ########################### 聊天展示区 ########################### if st.session_state.mode == "**🤖Chat**": if not st.session_state.gpt_choice: header.write("

🤖 "+st.session_state.openai_model+"

",unsafe_allow_html=True) else: header.write("

🤖 "+st.session_state.google_model+"

",unsafe_allow_html=True) if not st.session_state.speech_input: user_prompt = st.chat_input("Send a message") if user_prompt: if not st.session_state.gpt_choice: chat_ai(user_prompt,st.session_state.openai_model,st.session_state.openai_history,st.session_state.openai_session) else: chat_ai(user_prompt,st.session_state.google_model,st.session_state.google_histgory,st.session_state.google_session) else: with st.container(): st.session_state.speech_language = st.selectbox("🎙️language",st.session_state.speech_input_lists,on_change=change_paramater) st.session_state.audio_prompt = mic_recorder( start_prompt="🎙️开始说话", stop_prompt="🛑结束说话", just_once=True, use_container_width=True, callback=None, args=(), kwargs={}, key=None ) if st.session_state.audio_prompt: user_prompt = audio2text(st.session_state.audio_prompt,st.session_state.speech_language[-2:]) if not st.session_state.gpt_choice: chat_ai(user_prompt,st.session_state.openai_model,st.session_state.openai_history,st.session_state.openai_session) else: chat_ai(user_prompt,st.session_state.google_model,st.session_state.google_histgory,st.session_state.google_session) elif st.session_state.mode == "**🔤Deeplx**": header.write("

🔤 Deeplx-"+st.session_state.target_lang+"

",unsafe_allow_html=True) txt_prompt = st.chat_input("Input your content to be translated",max_chars=5000) if txt_prompt: translate(txt_prompt,st.session_state.target_lang[-2:]) elif st.session_state.mode == "**🎨Txt2Img**": header.write("

🎨 "+st.session_state.draw_model+"

",unsafe_allow_html=True) draw_prompt = st.chat_input("Send your prompt") if draw_prompt: text2img(draw_prompt) elif st.session_state.mode == "**📊Data**": # 获取数据 prompts_gpt = get_data("./prompts.csv") # 显示 header.write("

📊Data

",unsafe_allow_html=True) keywords = st.chat_input("Send your keywords") with show_data: tab_gpt,tab_sd = st.tabs(["GPT-Prompts","SD-Prompts"]) with tab_gpt: if keywords: st.session_state.prompts_gpt = pd.DataFrame(columns=['act', 'prompt']) idx = 0 for index,row in prompts_gpt.iterrows(): if keywords.lower() in row["act"].lower(): idx += 1 new_row = pd.DataFrame({"act":row["act"], "prompt":row["prompt"]}, index=[idx,]) st.session_state.prompts_gpt = pd.concat([st.session_state.prompts_gpt, new_row],ignore_index=True) st.dataframe(st.session_state.prompts_gpt) else: st.session_state.prompts_gpt = prompts_gpt st.dataframe(st.session_state.prompts_gpt) with show_data: pass change_paramater()