############################## # ===== Standard Imports ===== ############################## import os import sys import time import random import json from typing import Any, Dict, List, Optional, Union import torch import numpy as np from PIL import Image import gradio as gr import spaces # Diffusers imports from diffusers import ( DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image, ) from diffusers.utils import load_image # Hugging Face Hub imports from huggingface_hub import ModelCard, HfFileSystem ############################## # ===== config.py ===== ############################## DTYPE = torch.bfloat16 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" BASE_MODEL = "black-forest-labs/FLUX.1-dev" TAEF1_MODEL = "madebyollin/taef1" MAX_SEED = 2**32 - 1 ############################## # ===== utilities.py ===== ############################## def calculate_shift(image_seq_len, base_seq_len=256, max_seq_len=4096, base_shift=0.5, max_shift=1.16): m = (max_shift - base_shift) / (max_seq_len - base_seq_len) b = base_shift - m * base_seq_len mu = image_seq_len * m + b return mu def retrieve_timesteps(scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs): if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed.") if timesteps is not None: scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps def load_image_from_path(image_path: str): return load_image(image_path) def randomize_seed_if_needed(randomize_seed: bool, seed: int, max_seed: int) -> int: if randomize_seed: return random.randint(0, max_seed) return seed class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() elapsed = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {elapsed:.6f} seconds") else: print(f"Elapsed time: {elapsed:.6f} seconds") ############################## # ===== enhance.py ===== ############################## def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0): SYSTEM_PROMPT = ( "You are a prompt enhancer and your work is to enhance the given prompt under 100 words " "without changing the essence, only write the enhanced prompt and nothing else." ) timestamp = time.time() formatted_prompt = f"[INST] SYSTEM: {SYSTEM_PROMPT} [/INST][INST] {message} {timestamp} [/INST]" api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions" headers = {"Content-Type": "application/json"} payload = { "model": "mixtral-8x7b", "messages": [{"role": "user", "content": formatted_prompt}], "temperature": temperature, "top_p": top_p, "max_tokens": max_new_tokens, "use_cache": False, "stream": True } try: response = requests.post(api_url, headers=headers, json=payload, stream=True) response.raise_for_status() full_output = "" for line in response.iter_lines(): if not line: continue decoded_line = line.decode("utf-8").strip() if decoded_line.startswith("data:"): decoded_line = decoded_line[len("data:"):].strip() if decoded_line == "[DONE]": break try: json_data = json.loads(decoded_line) for choice in json_data.get("choices", []): delta = choice.get("delta", {}) content = delta.get("content", "") full_output += content yield full_output if choice.get("finish_reason") == "stop": return except json.JSONDecodeError: continue except requests.exceptions.RequestException as e: yield f"Error during generation: {str(e)}" ############################## # ===== lora_handling.py ===== ############################## # Default LoRA list for initial UI setup loras = [ {"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""} ] @torch.inference_mode() def flux_pipe_call_that_returns_an_iterable_of_images(self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, timesteps: List[int] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, max_sequence_length: int = 512, good_vae: Optional[Any] = None): height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor self.check_inputs( prompt, prompt_2, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) image_seq_len = latents.shape[1] mu = calculate_shift( image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift, ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu, ) self._num_timesteps = len(timesteps) guidance = (torch.full([1], guidance_scale, device=device, dtype=torch.float32) .expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None) for i, t in enumerate(timesteps): if self.interrupt: continue timestep = t.expand(latents.shape[0]).to(latents.dtype) noise_pred = self.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents_for_image, return_dict=False)[0] yield self.image_processor.postprocess(image, output_type=output_type)[0] latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] torch.cuda.empty_cache() latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor image = good_vae.decode(latents, return_dict=False)[0] self.maybe_free_model_hooks() torch.cuda.empty_cache() yield self.image_processor.postprocess(image, output_type=output_type)[0] def get_huggingface_safetensors(link: str) -> tuple: split_link = link.split("/") if len(split_link) == 2: model_card = ModelCard.load(link) base_model_card = model_card.data.get("base_model") print(base_model_card) if base_model_card not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"): raise Exception("Flux LoRA Not Found!") image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None fs = HfFileSystem() try: list_of_files = fs.ls(link, detail=False) for file in list_of_files: if file.endswith(".safetensors"): safetensors_name = file.split("/")[-1] if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): image_elements = file.split("/") image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" except Exception as e: print(e) raise Exception("Invalid LoRA repository") return split_link[1], link, safetensors_name, trigger_word, image_url else: raise Exception("Invalid LoRA link format") def check_custom_model(link: str) -> tuple: if link.startswith("https://"): if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): link_split = link.split("huggingface.co/") return get_huggingface_safetensors(link_split[1]) return get_huggingface_safetensors(link) def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str: trigger_word_info = (f"Using: {trigger_word} as the trigger word" if trigger_word else "No trigger word found. Include it in your prompt") return f'''
Loaded custom LoRA:

{title}

{trigger_word_info}
''' def add_custom_lora(custom_lora: str) -> tuple: global loras if custom_lora: try: title, repo, path, trigger_word, image = check_custom_model(custom_lora) print(f"Loaded custom LoRA: {repo}") card = create_lora_card(title, repo, trigger_word, image) existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) if existing_item_index is None: new_item = { "image": image, "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word } print(new_item) loras.append(new_item) existing_item_index = len(loras) - 1 return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word except Exception as e: print(f"Error loading LoRA: {e}") return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, "" else: return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" def remove_custom_lora() -> tuple: return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" def prepare_prompt(prompt: str, selected_index: Optional[int], loras_list: list) -> str: if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.🧨") selected_lora = loras_list[selected_index] trigger_word = selected_lora.get("trigger_word") if trigger_word: trigger_position = selected_lora.get("trigger_position", "append") if trigger_position == "prepend": prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = f"{prompt} {trigger_word}" else: prompt_mash = prompt return prompt_mash def unload_lora_weights(pipe, pipe_i2i): if pipe is not None: pipe.unload_lora_weights() if pipe_i2i is not None: pipe_i2i.unload_lora_weights() def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]): pipe_to_use.load_lora_weights( lora_path, weight_name=weight_name, low_cpu_mem_usage=True ) def update_selection(evt: gr.SelectData, width, height) -> tuple: selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": width = 768 height = 1024 elif selected_lora["aspect"] == "landscape": width = 1024 height = 768 else: width = 1024 height = 1024 return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, ) ############################## # ===== backend.py ===== ############################## class ModelManager: def __init__(self, hf_token=None): self.hf_token = hf_token self.pipe = None self.pipe_i2i = None self.good_vae = None self.taef1 = None self.initialize_models() def initialize_models(self): self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE) self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE) self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1).to(DEVICE) self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained( BASE_MODEL, vae=self.good_vae, transformer=self.pipe.transformer, text_encoder=self.pipe.text_encoder, tokenizer=self.pipe.tokenizer, text_encoder_2=self.pipe.text_encoder_2, tokenizer_2=self.pipe.tokenizer_2, torch_dtype=DTYPE, ).to(DEVICE) # Bind custom LoRA method to the pipeline class (to avoid __slots__ issues) self.pipe.__class__.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images @spaces.GPU(duration=100) def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale): generator = torch.Generator(device=DEVICE).manual_seed(seed) with calculateDuration("Generating image"): for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, output_type="pil", good_vae=self.good_vae, ): yield img def generate_image_to_image(self, prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed): generator = torch.Generator(device=DEVICE).manual_seed(seed) image_input = load_image_from_path(image_input_path) with calculateDuration("Generating image to image"): final_image = self.pipe_i2i( prompt=prompt_mash, image=image_input, strength=image_strength, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, output_type="pil", ).images[0] return final_image ############################## # ===== frontend.py ===== ############################## class Frontend: def __init__(self, model_manager: ModelManager): self.model_manager = model_manager self.loras = loras self.load_initial_loras() self.css = self.define_css() def define_css(self): return ''' /* Title Styling */ #title { text-align: center; margin-bottom: 20px; } #title h1 { font-size: 2.5rem; margin: 0; color: #333; } /* Button and Column Styling */ #gen_btn { width: 100%; padding: 12px; font-weight: bold; border-radius: 5px; } #gen_column { display: flex; align-items: center; justify-content: center; } /* Gallery and List Styling */ #gallery .grid-wrap { margin-top: 15px; } #lora_list { background-color: #f5f5f5; padding: 10px; border-radius: 4px; font-size: 0.9rem; } .card_internal { display: flex; align-items: center; height: 100px; margin-top: 10px; } .card_internal img { margin-right: 10px; } .styler { --form-gap-width: 0px !important; } /* Progress Bar Styling */ .progress-container { width: 100%; height: 20px; background-color: #e0e0e0; border-radius: 10px; overflow: hidden; margin-bottom: 20px; } .progress-bar { height: 100%; background-color: #4f46e5; transition: width 0.3s ease-in-out; width: calc(var(--current) / var(--total) * 100%); } ''' def load_initial_loras(self): try: from lora import loras as loras_list self.loras = loras_list except ImportError: print("Warning: lora.py not found, using placeholder LoRAs.") @spaces.GPU(duration=100) def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer, progress=gr.Progress(track_tqdm=True)): seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED) prompt_mash = prepare_prompt(prompt, selected_index, self.loras) enhanced_text = "" if use_enhancer: for enhanced_chunk in generate(prompt_mash): enhanced_text = enhanced_chunk yield None, seed, gr.update(visible=False), enhanced_text prompt_mash = enhanced_text else: enhanced_text = "" selected_lora = self.loras[selected_index] unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i) pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights")) if image_input is not None: final_image = self.model_manager.generate_image_to_image( prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed ) yield final_image, seed, gr.update(visible=False), enhanced_text else: image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale) final_image = None step_counter = 0 for image in image_generator: step_counter += 1 final_image = image progress_bar = f'
' yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text def create_ui(self): with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app: title = gr.HTML("

Flux LoRA Generation

", elem_id="title") selected_index = gr.State(None) with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt") with gr.Column(scale=1, elem_id="gen_column"): generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") with gr.Row(): with gr.Column(): selected_info = gr.Markdown("") gallery = gr.Gallery( [(item["image"], item["title"]) for item in self.loras], label="LoRA Collection", allow_preview=False, columns=3, elem_id="gallery", show_share_button=False ) with gr.Group(): custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime") gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") custom_lora_info = gr.HTML(visible=False) custom_lora_button = gr.Button("Remove custom LoRA", visible=False) with gr.Column(): progress_bar = gr.Markdown(elem_id="progress", visible=False) result = gr.Image(label="Generated Image") with gr.Row(): with gr.Accordion("Advanced Settings", open=False): with gr.Row(): input_image = gr.Image(label="Input image", type="filepath") image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) with gr.Column(): with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): randomize_seed = gr.Checkbox(True, label="Randomize seed") seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95) with gr.Row(): use_enhancer = gr.Checkbox(value=False, label="Use Prompt Enhancer") show_enhanced_prompt = gr.Checkbox(value=False, label="Display Enhanced Prompt") enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", visible=False) gallery.select( update_selection, inputs=[width, height], outputs=[prompt, selected_info, selected_index, width, height] ) custom_lora.input( add_custom_lora, inputs=[custom_lora], outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] ) custom_lora_button.click( remove_custom_lora, outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] ) show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show), inputs=show_enhanced_prompt, outputs=enhanced_prompt_box) gr.on( triggers=[generate_button.click, prompt.submit], fn=self.run_lora, inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer], outputs=[result, seed, progress_bar, enhanced_prompt_box] ) with gr.Row(): gr.HTML("
Credits: ruslanmv.com
") return app ############################## # ===== Main app.py ===== ############################## if __name__ == "__main__": hf_token = os.environ.get("HF_TOKEN") if not hf_token: raise ValueError("Hugging Face token (HF_TOKEN) not found in environment variables. Please set it.") model_manager = ModelManager(hf_token=hf_token) frontend = Frontend(model_manager) app = frontend.create_ui() app.queue() app.launch(share=False, debug=True)