ruslanmv's picture
Update app.py
aadfbd4 verified
raw
history blame
29.3 kB
##############################
# ===== Standard Imports =====
##############################
import os
import sys
import time
import random
import json
from math import floor
from typing import Any, Dict, List, Optional, Union
# Local import for default LoRA list (if available)
try:
from flux_app.lora import loras
except ImportError:
loras = [
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""}
]
import torch
import numpy as np
import requests
from PIL import Image
import spaces
# Diffusers imports
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
AutoencoderKL,
AutoPipelineForImage2Image,
)
from diffusers.utils import load_image
# Hugging Face Hub
from huggingface_hub import ModelCard, HfFileSystem
# Gradio (UI)
import gradio as gr
##############################
# ===== config.py =====
##############################
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
TAEF1_MODEL = "madebyollin/taef1"
MAX_SEED = 2**32 - 1
##############################
# ===== utilities.py =====
##############################
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
def load_image_from_path(image_path: str):
"""Loads an image from a given file path."""
return load_image(image_path)
def randomize_seed_if_needed(randomize_seed: bool, seed: int, max_seed: int) -> int:
"""Randomizes the seed if requested."""
if randomize_seed:
return random.randint(0, max_seed)
return seed
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
##############################
# ===== enhance.py =====
##############################
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
"""
Generates an enhanced prompt using a streaming Hugging Face API.
Enhances the given prompt under 100 words without changing its essence.
"""
SYSTEM_PROMPT = (
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
"without changing the essence, only write the enhanced prompt and nothing else."
)
timestamp = time.time()
formatted_prompt = (
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
f"[INST] {message} {timestamp} [/INST]"
)
api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions"
headers = {"Content-Type": "application/json"}
payload = {
"model": "mixtral-8x7b",
"messages": [{"role": "user", "content": formatted_prompt}],
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_new_tokens,
"use_cache": False,
"stream": True
}
try:
response = requests.post(api_url, headers=headers, json=payload, stream=True)
response.raise_for_status()
full_output = ""
for line in response.iter_lines():
if not line:
continue
decoded_line = line.decode("utf-8").strip()
if decoded_line.startswith("data:"):
decoded_line = decoded_line[len("data:"):].strip()
if decoded_line == "[DONE]":
break
try:
json_data = json.loads(decoded_line)
for choice in json_data.get("choices", []):
delta = choice.get("delta", {})
content = delta.get("content", "")
full_output += content
yield full_output
if choice.get("finish_reason") == "stop":
return
except json.JSONDecodeError:
continue
except requests.exceptions.RequestException as e:
yield f"Error during generation: {str(e)}"
##############################
# ===== lora_handling.py =====
##############################
# A default list of LoRAs for the UI
loras = [
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""}
]
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = (torch.full([1], guidance_scale, device=device, dtype=torch.float32)
.expand(latents.shape[0])
if self.transformer.config.guidance_embeds else None)
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
def get_huggingface_safetensors(link: str) -> tuple:
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
if base_model not in ("black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"):
raise Exception("Flux LoRA Not Found!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
return split_link[1], link, safetensors_name, trigger_word, image_url
except Exception as e:
print(e)
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
else:
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
def check_custom_model(link: str) -> tuple:
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
return get_huggingface_safetensors(link)
def create_lora_card(title: str, repo: str, trigger_word: str, image: str) -> str:
trigger_word_info = (
f"Using: <code><b>{trigger_word}</b></code> as the trigger word"
if trigger_word
else "No trigger word found. If there's a trigger word, include it in your prompt"
)
return f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{trigger_word_info}<br></small>
</div>
</div>
</div>
'''
def add_custom_lora(custom_lora: str, loras_list: list) -> tuple:
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = create_lora_card(title, repo, trigger_word, image)
existing_item_index = next((index for (index, item) in enumerate(loras_list) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras_list.append(new_item)
existing_item_index = len(loras_list) - 1
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
print(f"Error loading LoRA: {e}")
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora() -> tuple:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def prepare_prompt(prompt: str, selected_index: Optional[int], loras_list: list) -> str:
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.🧨")
selected_lora = loras_list[selected_index]
trigger_word = selected_lora.get("trigger_word")
if trigger_word:
trigger_position = selected_lora.get("trigger_position", "append")
if trigger_position == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = prompt
return prompt_mash
def unload_lora_weights(pipe, pipe_i2i):
if pipe is not None:
pipe.unload_lora_weights()
if pipe_i2i is not None:
pipe_i2i.unload_lora_weights()
def load_lora_weights_into_pipeline(pipe_to_use, lora_path: str, weight_name: Optional[str]):
pipe_to_use.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
def update_selection(evt: gr.SelectData, width, height, loras_list):
selected_lora = loras_list[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
##############################
# ===== backend.py =====
##############################
class ModelManager:
def __init__(self, hf_token=None):
self.hf_token = hf_token
self.pipe = None
self.pipe_i2i = None
self.good_vae = None
self.taef1 = None
self.initialize_models()
def initialize_models(self):
"""Initializes the diffusion pipelines and autoencoders."""
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE)
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE)
# Optionally, pass use_auth_token=self.hf_token if needed.
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1)
self.pipe = self.pipe.to(DEVICE)
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
BASE_MODEL,
vae=self.good_vae,
transformer=self.pipe.transformer,
text_encoder=self.pipe.text_encoder,
tokenizer=self.pipe.tokenizer,
text_encoder_2=self.pipe.text_encoder_2,
tokenizer_2=self.pipe.tokenizer_2,
torch_dtype=DTYPE,
).to(DEVICE)
# Instead of binding to the instance (which fails due to __slots__),
# bind the custom method to the pipeline’s class.
self.pipe.__class__.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images
@spaces.GPU(duration=100)
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
"""Generates an image using the text-to-image pipeline."""
self.pipe.to(DEVICE)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
with calculateDuration("Generating image"):
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=self.good_vae,
):
yield img
def generate_image_to_image(self, prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
"""Generates an image using the image-to-image pipeline."""
generator = torch.Generator(device=DEVICE).manual_seed(seed)
self.pipe_i2i.to(DEVICE)
image_input = load_image_from_path(image_input_path)
with calculateDuration("Generating image to image"):
final_image = self.pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
).images[0]
return final_image
##############################
# ===== frontend.py =====
##############################
class Frontend:
def __init__(self, model_manager: ModelManager):
self.model_manager = model_manager
self.loras = loras # Use the default LoRA list defined above.
self.load_initial_loras()
self.css = self.define_css()
def define_css(self):
# Clean and professional CSS styling.
return '''
/* Title Styling */
#title {
text-align: center;
margin-bottom: 20px;
}
#title h1 {
font-size: 2.5rem;
margin: 0;
color: #333;
}
/* Button and Column Styling */
#gen_btn {
width: 100%;
padding: 12px;
font-weight: bold;
border-radius: 5px;
}
#gen_column {
display: flex;
align-items: center;
justify-content: center;
}
/* Gallery and List Styling */
#gallery .grid-wrap {
margin-top: 15px;
}
#lora_list {
background-color: #f5f5f5;
padding: 10px;
border-radius: 4px;
font-size: 0.9rem;
}
.card_internal {
display: flex;
align-items: center;
height: 100px;
margin-top: 10px;
}
.card_internal img {
margin-right: 10px;
}
.styler {
--form-gap-width: 0px !important;
}
/* Progress Bar Styling */
.progress-container {
width: 100%;
height: 20px;
background-color: #e0e0e0;
border-radius: 10px;
overflow: hidden;
margin-bottom: 20px;
}
.progress-bar {
height: 100%;
background-color: #4f46e5;
transition: width 0.3s ease-in-out;
width: calc(var(--current) / var(--total) * 100%);
}
'''
def load_initial_loras(self):
try:
from lora import loras as loras_list
self.loras = loras_list
except ImportError:
print("Warning: lora.py not found, using placeholder LoRAs.")
pass
@spaces.GPU(duration=100)
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
randomize_seed, seed, width, height, lora_scale, use_enhancer,
progress=gr.Progress(track_tqdm=True)):
seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
# Prepare the prompt using the selected LoRA trigger word.
prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
enhanced_text = ""
# Optionally enhance the prompt.
if use_enhancer:
for enhanced_chunk in generate(prompt_mash):
enhanced_text = enhanced_chunk
yield None, seed, gr.update(visible=False), enhanced_text
prompt_mash = enhanced_text
else:
enhanced_text = ""
selected_lora = self.loras[selected_index]
unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
if image_input is not None:
final_image = self.model_manager.generate_image_to_image(
prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
)
yield final_image, seed, gr.update(visible=False), enhanced_text
else:
image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text
yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text
def create_ui(self):
with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
title = gr.HTML(
"""<h1>Flux LoRA Generation</h1>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in self.loras],
label="LoRA Collection",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath")
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
with gr.Row():
use_enhancer = gr.Checkbox(value=False, label="Use Prompt Enhancer")
show_enhanced_prompt = gr.Checkbox(value=False, label="Display Enhanced Prompt")
enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", visible=False)
gallery.select(
update_selection,
inputs=[width, height, gr.State(self.loras)],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora, gr.State(self.loras)],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
inputs=show_enhanced_prompt,
outputs=enhanced_prompt_box)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=self.run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index,
randomize_seed, seed, width, height, lora_scale, use_enhancer],
outputs=[result, seed, progress_bar, enhanced_prompt_box]
)
with gr.Row():
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
return app
##############################
# ===== Main app.py =====
##############################
if __name__ == "__main__":
# Get the Hugging Face token from the environment.
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token (HF_TOKEN) not found in environment variables. Please set it.")
model_manager = ModelManager(hf_token=hf_token)
frontend = Frontend(model_manager)
app = frontend.create_ui()
app.queue()
# Set share=True to create a public link if desired.
app.launch(share=False, debug=True)