Rub茅n Escobedo
commited on
Commit
路
e5a78d7
1
Parent(s):
8b40c8d
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,27 @@ import gradio as gr
|
|
3 |
import torchvision.transforms as transforms
|
4 |
import torch
|
5 |
|
6 |
-
# Cargamos el modelo
|
7 |
-
learn = load_learner('export.pkl')
|
8 |
-
|
9 |
# Definimos todo lo necesario para hacer inferencia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def transform_image(image, device):
|
11 |
my_transforms = transforms.Compose([transforms.ToTensor(),
|
12 |
transforms.Normalize(
|
@@ -26,6 +43,7 @@ def mask_to_img(mask):
|
|
26 |
|
27 |
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
28 |
def predict(img):
|
|
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
model = learn.cpu()
|
31 |
model.eval()
|
|
|
3 |
import torchvision.transforms as transforms
|
4 |
import torch
|
5 |
|
|
|
|
|
|
|
6 |
# Definimos todo lo necesario para hacer inferencia
|
7 |
+
class TargetMaskConvertTransform(ItemTransform):
|
8 |
+
def __init__(self):
|
9 |
+
pass
|
10 |
+
def encodes(self, x):
|
11 |
+
img,mask = x
|
12 |
+
|
13 |
+
#Convert to array
|
14 |
+
mask = np.array(mask)
|
15 |
+
|
16 |
+
# background = 0, leaves = 1, pole = 74 o 76, wood = 25 o 29, grape = 255
|
17 |
+
mask[mask == 255] = 1 # grape
|
18 |
+
mask[mask == 150] = 2 # leaves
|
19 |
+
mask[mask == 76] = 3 ; mask[mask == 74] = 3 # pole
|
20 |
+
mask[mask == 29] = 4 ; mask[mask == 25] = 4 # wood
|
21 |
+
mask[mask >= 5] = 0 # resto: background
|
22 |
+
|
23 |
+
# Back to PILMask
|
24 |
+
mask = PILMask.create(mask)
|
25 |
+
return img, mask
|
26 |
+
|
27 |
def transform_image(image, device):
|
28 |
my_transforms = transforms.Compose([transforms.ToTensor(),
|
29 |
transforms.Normalize(
|
|
|
43 |
|
44 |
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
45 |
def predict(img):
|
46 |
+
learn = load_learner('export.pkl')
|
47 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
model = learn.cpu()
|
49 |
model.eval()
|