Rub茅n Escobedo commited on
Commit
e5a78d7
1 Parent(s): 8b40c8d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -3
app.py CHANGED
@@ -3,10 +3,27 @@ import gradio as gr
3
  import torchvision.transforms as transforms
4
  import torch
5
 
6
- # Cargamos el modelo
7
- learn = load_learner('export.pkl')
8
-
9
  # Definimos todo lo necesario para hacer inferencia
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  def transform_image(image, device):
11
  my_transforms = transforms.Compose([transforms.ToTensor(),
12
  transforms.Normalize(
@@ -26,6 +43,7 @@ def mask_to_img(mask):
26
 
27
  # Definimos una funci贸n que se encarga de llevar a cabo las predicciones
28
  def predict(img):
 
29
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
  model = learn.cpu()
31
  model.eval()
 
3
  import torchvision.transforms as transforms
4
  import torch
5
 
 
 
 
6
  # Definimos todo lo necesario para hacer inferencia
7
+ class TargetMaskConvertTransform(ItemTransform):
8
+ def __init__(self):
9
+ pass
10
+ def encodes(self, x):
11
+ img,mask = x
12
+
13
+ #Convert to array
14
+ mask = np.array(mask)
15
+
16
+ # background = 0, leaves = 1, pole = 74 o 76, wood = 25 o 29, grape = 255
17
+ mask[mask == 255] = 1 # grape
18
+ mask[mask == 150] = 2 # leaves
19
+ mask[mask == 76] = 3 ; mask[mask == 74] = 3 # pole
20
+ mask[mask == 29] = 4 ; mask[mask == 25] = 4 # wood
21
+ mask[mask >= 5] = 0 # resto: background
22
+
23
+ # Back to PILMask
24
+ mask = PILMask.create(mask)
25
+ return img, mask
26
+
27
  def transform_image(image, device):
28
  my_transforms = transforms.Compose([transforms.ToTensor(),
29
  transforms.Normalize(
 
43
 
44
  # Definimos una funci贸n que se encarga de llevar a cabo las predicciones
45
  def predict(img):
46
+ learn = load_learner('export.pkl')
47
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
48
  model = learn.cpu()
49
  model.eval()