|
import gradio as gr |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_name = "rubenroy/Zurich-7B-GCv2-5m" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
@spaces.GPU |
|
def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1): |
|
messages = [ |
|
{"role": "system", "content": "You are a helpul assistant named Zurich, a 7 billion parameter Large Language model, you were fine-tuned and trained by Ruben Roy. You have been trained with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations, this was also made by Ruben Roy."}, |
|
{"role": "user", "content": message} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
temperature=float(temperature), |
|
top_p=float(top_p), |
|
top_k=int(top_k), |
|
max_new_tokens=int(max_new_tokens), |
|
repetition_penalty=float(repetition_penalty), |
|
do_sample=True if float(temperature) > 0 else False |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response |
|
|
|
TITLE_HTML = """ |
|
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css"> |
|
<style> |
|
.model-btn { |
|
background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%); |
|
color: white !important; |
|
padding: 0.75rem 1rem; |
|
border-radius: 0.5rem; |
|
text-decoration: none !important; |
|
font-weight: 500; |
|
transition: all 0.2s ease; |
|
font-size: 0.9rem; |
|
display: flex; |
|
align-items: center; |
|
justify-content: center; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
} |
|
.model-btn:hover { |
|
background: linear-gradient(135deg, #1d4ed8 0%, #1e40af 100%); |
|
box-shadow: 0 4px 6px rgba(0,0,0,0.2); |
|
} |
|
.model-section { |
|
flex: 1; |
|
max-width: 450px; |
|
background: rgba(255, 255, 255, 0.05); |
|
padding: 1.5rem; |
|
border-radius: 1rem; |
|
border: 1px solid rgba(255, 255, 255, 0.1); |
|
backdrop-filter: blur(10px); |
|
transition: all 0.3s ease; |
|
} |
|
.info-link { |
|
color: #60a5fa; |
|
text-decoration: none; |
|
transition: color 0.2s ease; |
|
} |
|
.info-link:hover { |
|
color: #93c5fd; |
|
text-decoration: underline; |
|
} |
|
.info-section { |
|
margin-top: 0.5rem; |
|
font-size: 0.9rem; |
|
color: #94a3b8; |
|
} |
|
.settings-section { |
|
background: rgba(255, 255, 255, 0.05); |
|
padding: 1.5rem; |
|
border-radius: 1rem; |
|
margin: 1.5rem auto; |
|
border: 1px solid rgba(255, 255, 255, 0.1); |
|
max-width: 800px; |
|
} |
|
.settings-title { |
|
color: #e2e8f0; |
|
font-size: 1.25rem; |
|
font-weight: 600; |
|
margin-bottom: 1rem; |
|
display: flex; |
|
align-items: center; |
|
gap: 0.7rem; |
|
} |
|
.parameter-info { |
|
color: #94a3b8; |
|
font-size: 0.8rem; |
|
margin-top: 0.25rem; |
|
} |
|
</style> |
|
|
|
<div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);"> |
|
<div style="margin-bottom: 1.5rem;"> |
|
<div style="display: flex; align-items: center; justify-content: center; gap: 1rem;"> |
|
<h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #60a5fa 0%, #93c5fd 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Zurich</h1> |
|
<div style="width: 2px; height: 2.5rem; background: linear-gradient(180deg, #3b82f6 0%, #60a5fa 100%);"></div> |
|
<p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p> |
|
</div> |
|
<div class="info-section"> |
|
<span>Fine-tuned from <a href="https://huggingface.co/Qwen/Qwen2.5-7B-Instruct" class="info-link">Qwen 2.5 7B Instruct</a> | Model: <a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-5m" class="info-link">Zurich-7B-GCv2-5m</a> | Training Dataset: <a href="https://huggingface.co/datasets/rubenroy/GammaCorpus-v2-5m" class="info-link">GammaCorpus v2 5m</a></span> |
|
</div> |
|
</div> |
|
|
|
<div style="display: flex; gap: 1.5rem; justify-content: center; flex-wrap: wrap;"> |
|
<div class="model-section"> |
|
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;"> |
|
<i class="fas fa-microchip"></i> |
|
1.5B Models |
|
</h2> |
|
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;"> |
|
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-5m" class="model-btn">Zurich 1.5B GCv2 5m</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-1m" class="model-btn">Zurich 1.5B GCv2 1m</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-500k" class="model-btn">Zurich 1.5B GCv2 500k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-100k" class="model-btn">Zurich 1.5B GCv2 100k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-50k" class="model-btn">Zurich 1.5B GCv2 50k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-10k" class="model-btn">Zurich 1.5B GCv2 10k</a> |
|
</div> |
|
</div> |
|
<div class="model-section"> |
|
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;"> |
|
<i class="fas fa-brain"></i> |
|
7B Models |
|
</h2> |
|
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;"> |
|
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-5m" class="model-btn">Zurich 7B GCv2 5m</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-1m" class="model-btn">Zurich 7B GCv2 1m</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-500k" class="model-btn">Zurich 7B GCv2 500k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-100k" class="model-btn">Zurich 7B GCv2 100k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-50k" class="model-btn">Zurich 7B GCv2 50k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-7B-GCv2-10k" class="model-btn">Zurich 7B GCv2 10k</a> |
|
</div> |
|
</div> |
|
<div class="model-section"> |
|
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;"> |
|
<i class="fas fa-rocket"></i> |
|
14B Models |
|
</h2> |
|
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;"> |
|
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-5m" class="model-btn">Zurich 14B GCv2 5m</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-1m" class="model-btn">Zurich 14B GCv2 1m</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-500k" class="model-btn">Zurich 14B GCv2 500k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-100k" class="model-btn">Zurich 14B GCv2 100k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-50k" class="model-btn">Zurich 14B GCv2 50k</a> |
|
<a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-10k" class="model-btn">Zurich 14B GCv2 10k</a> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
""" |
|
|
|
examples = [ |
|
["Explain quantum computing in simple terms"], |
|
["Write a short story about a time traveler"], |
|
["Explain the process of photosynthesis"], |
|
["Tell me an interesting fact about Palm trees"] |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(TITLE_HTML) |
|
|
|
with gr.Accordion("Generation Settings", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
temperature = gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature", |
|
info="Higher values make the output more random, lower values make it more deterministic", |
|
interactive=True |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.9, |
|
step=0.05, |
|
label="Top P", |
|
info="Controls the cumulative probability threshold for nucleus sampling", |
|
interactive=True |
|
) |
|
top_k = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
value=50, |
|
step=1, |
|
label="Top K", |
|
info="Limits the number of tokens to consider for each generation step", |
|
interactive=True |
|
) |
|
with gr.Column(): |
|
max_new_tokens = gr.Slider( |
|
minimum=1, |
|
maximum=2048, |
|
value=512, |
|
step=1, |
|
label="Max New Tokens", |
|
info="Maximum number of tokens to generate in the response", |
|
interactive=True |
|
) |
|
repetition_penalty = gr.Slider( |
|
minimum=1.0, |
|
maximum=2.0, |
|
value=1.1, |
|
step=0.1, |
|
label="Repetition Penalty", |
|
info="Higher values stop the model from repeating the same info", |
|
interactive=True |
|
) |
|
|
|
chatbot = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
temperature, |
|
top_p, |
|
top_k, |
|
max_new_tokens, |
|
repetition_penalty |
|
], |
|
examples=examples |
|
) |
|
|
|
demo.launch(share=True) |