import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "rubenroy/Zurich-1.5B-GCv2-5m" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) @spaces.GPU def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1): messages = [ {"role": "system", "content": "You are a helpul assistant named Zurich, a 1.5 billion parameter Large Language model, you were fine-tuned and trained by Ruben Roy. You have been trained with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations, this was also made by Ruben Roy."}, # Attribution to Qwen is not included to prevent hallucinations. {"role": "user", "content": message} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, temperature=float(temperature), top_p=float(top_p), top_k=int(top_k), max_new_tokens=int(max_new_tokens), repetition_penalty=float(repetition_penalty), do_sample=True if float(temperature) > 0 else False ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response TITLE_HTML = """
GammaCorpus v2-5m