Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler | |
| from diffusers import AutoPipelineForText2Image | |
| import spaces | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 | |
| # repo = "dataautogpt3/OpenDalleV1.1" | |
| repo = "SG161222/RealVisXL_V4.0" | |
| repo = "SG161222/RealVisXL_V5.0" | |
| # repo="stabilityai/stable-diffusion-3-medium-tensorrt" | |
| # pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device) | |
| pipeline = AutoPipelineForText2Image.from_pretrained(repo, torch_dtype=torch.float16).to('cuda') | |
| def adjust_to_nearest_multiple(value, divisor=8): | |
| """ | |
| Adjusts the input value to the nearest multiple of the divisor. | |
| Args: | |
| value (int): The value to adjust. | |
| divisor (int): The divisor to which the value should be divisible. Default is 8. | |
| Returns: | |
| int: The nearest multiple of the divisor. | |
| """ | |
| if value % divisor == 0: | |
| return value | |
| else: | |
| # Round to the nearest multiple of divisor | |
| return round(value / divisor) * divisor | |
| def adjust_dimensions(height, width): | |
| """ | |
| Adjusts the height and width to be divisible by 8. | |
| Args: | |
| height (int): The height to adjust. | |
| width (int): The width to adjust. | |
| Returns: | |
| tuple: Adjusted height and width. | |
| """ | |
| new_height = adjust_to_nearest_multiple(height) | |
| new_width = adjust_to_nearest_multiple(width) | |
| return new_height, new_width | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 4100 | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| width = min(width, MAX_IMAGE_SIZE // 2) | |
| height = min(height, MAX_IMAGE_SIZE // 2) | |
| height, width = adjust_dimensions(height, width) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipeline(prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| width = width, | |
| height = height, | |
| generator = generator | |
| ).images[0] | |
| # image = pipe( | |
| # prompt = prompt, | |
| # negative_prompt = negative_prompt, | |
| # guidance_scale = guidance_scale, | |
| # num_inference_steps = num_inference_steps, | |
| # width = width, | |
| # height = height, | |
| # generator = generator | |
| # ).images[0] | |
| return image, seed | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 580px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) | |
| Learn more about the [Stable Diffusion 3 series](https://stability.ai/news/stable-diffusion-3). Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), [Stable Assistant](https://stability.ai/stable-assistant), or on Discord via [Stable Artisan](https://stability.ai/stable-artisan). Run locally with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [diffusers](https://github.com/huggingface/diffusers) | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=64, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=64, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| inputs = [prompt] | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
| fn = infer, | |
| inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs = [result, seed] | |
| ) | |
| demo.launch() |